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Abstract

The rise of computer vision systems has reshaped many industries, driven by the powerful capabilities of

deep neural networks. However, as the complexity of these systems grows, so does the demand for larger

datasets. However, the manual annotation of large-scale datasets comprising the diversity required by

these systems is labour-intensive and time-consuming. This dissertation delves into the exploration of

procedural generation techniques for hand pose datasets to overcome this challenge while also investigating

the impact of controlled variations in detection quality and reliability, encompassing joint angles, wrist

orientations, texture, lighting, and background variations, aiming to make it capable of handling diverse

real-world settings. To assess the efficacy of the generated datasets, a state-of-the-art computer vision

system is trained to detect key points in hand images using both the procedurally generated dataset

and traditionally annotated datasets. Comparative analyses evaluate the trained system’s performance

on real-world data, comprehending the influence of procedural variations on its accuracy, robustness,

and generalisation capabilities. In conclusion, this dissertation contributes to hand pose estimation by

integrating innovative approaches for procedurally generating datasets. The findings underscore the

importance of automated variations in dataset generation and offer insights into their impact on the

quality of trained computer fabrication systems.

Keywords — Synthetic data generation, computer vision, hand pose estimation, automated variations
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Chapter 1

Introduction

In recent years, the proliferation of computer vision systems has witnessed a substantial rise, leading to

a profound impact on the tasks computers can perform with little human interaction [13, 14]. These

technologies have impacted nearly every sector, encompassing industries ranging from healthcare and

automotive to retail, surveillance, and entertainment.

These systems aim to replicate human vision and understanding capabilities, allowing machines to recog-

nise and analyse objects, scenes, and patterns within graphic data. Neural networks—particularly deep

neural networks—have become the crucial technology in most complex modern computer vision systems

[15, 16].

Neural Networks (NNs)—initially inspired by the structure and functioning of human neurons—consist

of interconnected nodes organised in layers [17, 18]. Each node applies mathematical operations to its

inputs and produces outputs using a series of trained parameters. These outputs are subsequently sent to

adjoining layers that will take them as inputs. The depth of a Neural Network—the number of layers it

possesses—plays a critical role in determining the complexity of tasks the system can accomplish. As their

depth increases, networks become capable of learning increasingly intricate features and patterns, as they

have higher capacities to model complex relationships between data [19]. Deep neural networks, such

as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have remarkably

performed in handling computer vision tasks [15].

Nevertheless, using deep neural networks presents a noteworthy drawback whereby larger datasets are

needed to obtain generalisable models. Although other challenges associated with network depth—such

as the vanishing/exploding gradient problem—can be mitigated with specialised training techniques and

methods [20, 21], the need to enlarge the training dataset persists as the depth increases. As discussed

by Zhang et al., the number of parameters in a deep network can easily present enough expressivity to

overfit the training data if not big-enough datasets are used [22].

Training models with such big datasets has become more attainable in recent years due to the greater

availability of powerful computational resources. Modern high-end machines can leverage their computing

power to train deep neural networks with enormous amounts of data in reasonable training times to obtain

robust models. The advance of specialised parallelisation software and hardware—GPUs or TPUs—has

significantly reduced training times [23, 24].
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The inherent challenges of training such systems are not eradicated despite the technical feasibility. One

of the most significant challenges researchers and developers face is the obtention of large amounts of

data [25]. While publicly and commercially available labelled datasets exist [26], the scarcity or absence

of desired data for specific problems forces developers to seek alternative means of data acquisition.

Obtaining and labelling real-life data usually involves significant time and manual labour costs [26, 27].

Often, these costs make building these large datasets unfeasible or impractical. Therefore, alternative

approaches for data augmentation and procedurally generating datasets have been introduced in diverse

scenarios [28, 29]. Substantial results have been obtained in recent years using synthetic data—both for

data augmentation [30, 31, 32] and for training models exclusively on synthetic data [33, 34].

This dissertation aims to demonstrate the design process of a synthetic dataset generation system us-

ing computer graphics and investigate the impact of different variations on a model’s capacities. By

exploring the correlation between different variations and model performance, this research deepens our

understanding of how different techniques affect the model’s ability to acquire knowledge.

The scope of synthetic dataset generation is vast, as these techniques can be applied to train virtually

any deep learning system. This dissertation acknowledges the extensive nature of this field and recognises

the necessity of narrowing the focus. Doing so makes it possible to focus on specific aspects of a more

targeted problem and explore the effects of different techniques on the results. Defining the boundaries

of this research to one specific problem allows for meaningful experiments that offer valuable insights,

allowing for a deeper understanding of the corresponding intricacies and contributing to future research.

Therefore, the scope of this dissertation focuses on the problem of hand pose detection [35, 36, 37, 38]. It

seeks to explore the creation of a synthetic dataset and conduct experiments to evaluate the influence of

controlled variations, including joint angles, wrist orientations, texture, lighting, and background, on the

quality and reliability of hand pose detection. By studying the effects of these variations, this research

assesses dataset robustness.

To assess the effectiveness of the produced datasets, state-of-the-art computer vision systems are trained

to detect key points in hand images using both the procedurally generated dataset and traditionally anno-

tated datasets. Performance metrics are used to assess the suitability to infer real-world data, examining

the influence of variations on its accuracy, robustness, and generalisation capabilities. In conclusion, this

dissertation aims to contribute to the ongoing research on procedurally generating datasets and to assess

their suitability for hand pose estimation.
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Chapter 2

Background

This dissertation focuses on the synthetic generation of hand pose datasets to study the intricacies

and specifics that impact such a system when applied to a definite, quantifiable problem. Therefore,

this section encompasses a dual background review exploring synthetic dataset generation and hand pose

detection, establishing a solid theoretical foundation for both the overarching theme and the experimental

design.

2.1 Synthetic image dataset generation

Machine Learning (ML) is the field of Computer Science that fundamentally encompasses all algorithms

and models created to extract and assimilate knowledge, relationships, and patterns from data and use

them to make decisions [39]. Contrary to conventional programming principles, wherein developers craft

specific instructions to direct computational tasks, ML uses mathematical foundations to allow computers

to ’uncover’ the most appropriate algorithms to perform the necessary task independently.

The origin of the term ”Machine Learning” is commonly linked to Arthur L. Samuel, an IBM engineer

and AI pioneer. This association stems from his 1959 publication titled ”Some Studies in Machine

Learning Using the Game of Checkers” [40]. During the 1960s, experiments revolved around pattern

matching decision-making, including methods such as trial-and-error and the nearest neighbor algorithm

[41, 42, 43]. The subsequent decades, particularly the 1970s and 1980s, witnessed increasing interest in

research directed towards Machine Learning [44, 45, 46], a momentum that has exponentially grown until

today.

Today, the ambit of Machine Learning has found its applications across a vast spectrum of domains where

manual curation of algorithms by human programmers would prove inefficient, deeply imprecise and often

economically impractical. Machine learning has significantly impacted many sectors, including healthcare,

finance, manufacturing, transportation, energy, advertising, entertainment, and others [47, 48, 49].

Machine learning’s versatility arises from its independent approach to problem-solving, which revolves

around transforming any problem into a common framework of numeric data [50]. Machine Learning

is fundamentally rooted in mathematical models with adjustable internal parameters, which map input

Procedural Generation of Datasets for Training Hand Pose Estimation Systems Page 13 of 75



Figure 2.1: An illustration of the AlexNet architecture, an example of a deep neural network. AlexNet
is considered one of the most influential contributions in the field of deep learning. As of August 2023, it
has been cited over 135,000 times. [1]

features to outputs. The essence of the learning process entails finding optimal internal parameters or

weights that can effectively address the given problem, achieving minimal possible loss. Consequently,

mathematical optimisation stands as the cornerstone of machine learning [50]. In pursuit of determining

these weights, various optimisation strategies are available, including but not limited to gradient descent,

Evolutionary algorithms, and Adaptive Moment Estimation (ADAM) [51]. The principal distinction

between conventional optimisation and machine learning lies in the concept of generalisation. Traditional

optimisation algorithms excel in minimising loss within a training dataset, yet machine learning extends

its focus toward minimising loss to previously unseen samples.

Understandably, models with greater numbers of trainable parameters can model more complex rela-

tionships between input features and outputs, being able to handle more complex problems [52]. Neu-

ral Networks—initially conceptualised to emulate the architectural configuration of the human brain

[53]—constitute a genre of these complex machine learning systems. They comprise interconnected neu-

rons organised into input, hidden, and output layers. Their proficiency in capturing complex patterns,

leveraging substantial datasets, and executing intricate computations through layered connections estab-

lishes them as a dominant force in resolving multifaceted issues across diverse domains. This ”deep”

nature refers to the depth of transformation layers, further extending their capability to process data.

Neural Networks have proven effective in addressing many intricate Computer Vision challenges. Their

ability to automatically learn and extract complex visual features from raw data, coupled with the hierar-

chical learning facilitated by deep architectures, has led to remarkable advancements in various domains of

Computer Vision [54]. Tasks such as classification, detection, segmentation and attribute extraction have

all seen significant improvements in accuracy and robustness by applying these technologies in contrast

to the alternative methods previously used [55].

However, while deeper neural networks excel at handling more challenging tasks, they introduce additional

complexities to the training process. Firstly, the issue of vanishing and exploding gradients [56] arises

during backpropagation in deep networks, where gradients can dwindle or surge uncontrollably as they

traverse the layers, potentially resulting in lousy convergence or complete training failure. Secondly, the

number of parameters impacts the resources needed for training and inference [57]. Still, it also extends to

the optimisation methods, as traditional methods might not work as expected in high-dimensional-spaced

problems [58]. Finally, as discussed by Zhang et al., the number of parameters in a deep network can
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easily present enough expressivity to perfectly overfit the given data if not enough data is used [22].

Many of these challenges have been effectively addressed by implementing advanced training techniques.

Thoughtful weight initialisation, activation functions like ReLU, and normalisation methods such as

batch normalisation mitigate issues related to vanishing and exploding gradients [56]. Furthermore, using

sophisticated optimisers like Adam, RMSprop, and similar alternatives demands careful tuning to ensure

reliable convergence [58]. However, the critical problem of achieving model generalisability hinges mainly

on the availability of balanced, quality, and sufficiently large datasets. Therefore, obtaining labelled data

has become one of the main obstacles in complex Machine Learning problems.

While real-world image data collection can be automated [59, 60] to a limited extent for applications

involving fixed or vehicle-mounted cameras, this automation only applies to some computer vision sce-

narios. Challenges intensify when intricate data annotation is required. Manual data annotation can

be a sluggish and arduous process, influenced by the specificity and accuracy demands of the annota-

tions. Some types of datasets are relatively simple to annotate, like classification datasets. However,

the undertaking becomes exceedingly time-consuming when confronted with annotating over a million

images, even with a substantial workforce. As the annotations grow more complex, encompassing ele-

ments such as crowd headcounts, object poses, and depth perception, the cost-effectiveness of manual

annotation diminishes significantly. Beyond temporal and financial concerns, manual annotation quality

often deteriorates with large datasets due to inherent human errors [61]. Indeed, there are certain types

of problems and applications for which individuals might not be capable of realistically and extensively

providing reliable annotations.

In this context, generating custom training data receives significant interest from the research community.

Synthetic data entails the creation of artificially generated datasets that replicate the statistical properties,

patterns, and characteristics of real-world data without gathering actual data from the real world [62]. It

has emerged as a long-term goal within machine learning systems, allowing researchers to create data that

directly suits their precise problem scenarios. Synthetic data is generated through algorithms, models,

or computational techniques and is extremely useful for tackling data scarcity, resource limitations and

many other constraints.

Synthetic data encompasses a broad spectrum of techniques and purposes originating from sources other

than real-world data. This realm is subdivided into three categories: data augmentation, data generation,

and data completion [62]. Data augmentation involves techniques that enrich existing datasets by apply-

ing transformations or modifications to real-world data, enhancing their diversity and robustness. This

means creating artificial variations of real-world instances that help achieve model generalisation. Data

generation, on the other hand, entails creating entirely new data that emulate the statistical attributes

and patterns found in real-world data. In Computer Vision, this often includes realistic rendering for cre-

ating images that look virtually like the real world. Lastly, data completion refers to filling in missing or

incomplete data points, effectively reconstructing the dataset while adhering to its underlying structure.

The adaptability of synthetic data generation extends to the variety of data types that can be used

for input and output [63]. It encompasses a diverse range of information modalities, including but not

restricted to RGB images, depth maps, segmentation masks, and key point annotations. RGB images

provide visual cues akin to human perception, emulating true-to-life scenes recorded with conventional

cameras. This data type requires great details and advanced rendering techniques to obtain highly realis-

tic images equivalent to real-world sampled images. Depth maps introduce spatial dimensions, capturing
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Figure 2.2: Example of data augmentation through colour and blur variations from the Albumentations
library. Data augmentation is a widely used technique for generating synthetic data. [2]

the distances between objects and facilitating the replication of three-dimensional contexts. While the

accuracy of rendering techniques for such information isn’t always necessary, achieving excessively flawless

simulations can pose a challenge, given that real-world sensors do not operate in such an ideal manner

[64]. Segmentation masks define object boundaries, enabling the isolation and categorisation of distinct

elements within a scene. Segmentation problems are particularly interesting for synthetic data, as gener-

ating segmentation maps is very time-consuming to perform manually. Keypoint annotations, conversely,

offer accurate positional information, facilitating the recreation of intricate structural relationships.

Synthetic data offers a multitude of compelling advantages. Firstly, it addresses privacy concerns, as

the resulting data does not belong to actual individuals, ensuring total confidentiality [65]. Moreover,

synthetic data can reduce the bias found in many real-world datasets. However, this presents a dual-

faceted scenario. While a procedurally generated dataset can be constructed to address bias intentionally,

it’s equally susceptible to succumbing to the same diversity deficits that plague traditional datasets [66].

These biases are deeply ingrained within the human psyche and frequently go unnoticed, causing them to

be inadvertently overlooked. By meticulously crafting data, skewed patterns can be deliberately rectified,

fostering fairer and unbiased model outcomes. Additionally, synthetic data’s volume can be tailored to

the specific requirements of models, obtaining control over data quantity.

However, even though synthetic data presents notable theoretical advantages over real-world data acqui-

sition, it still poses significant challenges for models to generalise to real-world settings effectively [67].

Mainly, these approaches demonstrate superior performance when dealing with more straightforward
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problems of Computer Vision. This phenomenon is known as the ”synthetic-to-real gap” [68], where

models trained on synthetic data might not achieve optimal performance when faced with the intricacies,

uncertainties, and unmodeled factors of real-world environments. Despite advancements in generating

more diverse and realistic synthetic data, the inherent divergence between synthetic and real-world data

remains a hurdle. As a result, bridging this gap is the focal point in research, involving techniques like do-

main adaptation, transfer learning, and fine-tuning to enhance model robustness and adaptability across

the transition from synthetic to real data domains.

2.2 Hand pose estimation

A hand pose refers to the intended or unintended configuration or arrangement of the hand’s elements.

These elements’ relative position and orientation in a specific instant define a hand pose. Conversely, a

hand gesture is a necessarily intentional action involving a sequence of poses, and their relative position

to the body, intended to communicate a message [38].

The human hand exhibits a distinctive anatomical composition comprising three primary components

ruling its configuration: the palm, fingers, and thumb. Each component comprises multiple bones, giving

them unique anatomical, kinematic, and positional attributes restricting the range of feasible hand poses.

In this section, the term ”palm” encompasses both the front and back regions, which serve as the central

connection between the wrist and the fingers. The palm comprises five metacarpal bones, each aligned

with a corresponding finger [69]. Notably, these metacarpal bones are longer than any other bones in

the hand, possess a cylindrical shape, and articulate with both the wrist bones and fingers. The fingers

consist of three phalanges—proximal, middle, and distal—arranged based on their proximity to the palm,

from inner to outer. The proximal and middle phalanges are articulated on both ends, while the distal

phalanx (the fingertip) lacks any continuation by another bone. As for the thumb, it solely comprises

two phalanges, missing the middle phalanx present in the other fingers. These bone configurations

establish the rigid structural framework of the hand and, barring malformation cases, dictate the general

proportions observed in adult human hands.

The bones in the hand are connected by a series of joints that allow its intricate movements. Finger joints

are classified into two main categories: interphalangeal and metacarpophalangeal. Metacarpophalangeal

joints (MCP) are situated between metacarpal bones and proximal phalanges. MCP joints allow flexion,

extension, and some degree of abduction and adduction—lateral rotation spreading and bringing together

the fingers. Secondly, the carpometacarpal joint (CMC) is a unique joint connection to the thumb that

provides a wide range of motion and enables opposition. Finally, the wrist allows for a much greater range

of movements, allowing flexion and extension, abduction and adduction, and pronation and supination.

The hand’s degrees of freedom (DOFs) refer to the number of independent ways the joints can move to

form different poses. Each degree of freedom is defined by one type of motion in one joint. The human

hand possesses over 20 DOFs—the exact number depends on the level of abstraction—contributing to

its dexterity [69]. Flexion and extension refer to a joint’s bending (flexion) and straightening (extension)

[70]. Abduction and adduction refer to the joint’s spreading apart (abduction) and bringing it together.

Opposition is the unique ability of the thumb to pivot across the palm, allowing it to meet the tips of

the other fingers. Finally, pronation and supination refer to the motions that involve rotating the hand

to turn the palm downward (pronation) or upward (supination).
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Figure 2.3: Illustration of the anatomy and degrees of freedom of the human hand. This model of
dexterity is used for hand pose estimation. Adapted from [3]

Hand pose estimation is the process of determining the position of these elements by defining the 3D or 2D

coordinates of specific key points of the hand from given data. This information is subsequently used to

infer the hand’s specific gesture or pose. The domain of hand pose estimation encloses diverse techniques

employing distinctive input data, such as individual static images, video sequences, or specialised sensors

capturing other types of data.

In recent years, hand pose estimation has been a relevant discussion topic in computer vision because of

its wide range of real-world applications, necessary in many fields, such as human-computer interaction

[71], sign language recognition [4], augmented and virtual reality [72], robotics, and gesture-based control

systems. Given the fast, natural and organic means of communication that hand gestures can be, this

topic has been of particular interest for researchers in interaction with other fields, such as accessibility

[73], special education [38], anthropology and sociology.

Sign languages have garnered significant attention in this field over the past decade, driven by the goal

of providing equal access to services and applications for their user communities. These languages cater

to various users, such as deaf and hard-of-hearing people, individuals with autism facing communication

challenges, and other users with special needs. As a result, organisations and institutions have shown

increased interest and investment in researching this field [74, 75], leading to substantial growth in

published literature. The diversity of sign languages, both in their purpose and lexicon, [76] has motivated

researchers to develop efficient and precise systems capable of distinguishing hundreds of different signs

and poses. This pursuit has made sign languages a driving force in advancing pose estimation research

using computer vision.

Within the domain of hand pose estimation, a wide array of systems employ diverse techniques to detect

and infer hand poses, catering to the vast range of applications and domain-specific requirements. These

techniques encompass Machine Learning, depth-based, model-based, and hybrid systems. Depth-based

methodologies use sensors such as LIDAR [77], Kinect [78], or stereo cameras to capture three-dimensional

(3D) information. On the other hand, model-based approaches utilise hand models and optimisation

techniques to infer hand poses by fitting the model to observed data. Hybrid approaches constitute

a fusion of multiple techniques, such as integrating RGB images with depth information or combining

model-based and data-driven methods. Ultimately, the choice of techniques depends on the specific use
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Figure 2.4: Examples of different configurations a human hand can take. The examples are based on the
Irish Sign Language. [4]

case, available hardware, and the desired levels of accuracy and real-time performance.

Despite ongoing research on hand pose estimation, this topic has not been perfectly resolved due to its

non-trivial nature and inherent challenges. These challenges present obstacles to achieving high accuracy

and reliability in hand pose estimation. Some of the most prominent challenges include occlusions, where

parts of the hand are obscured, and self-occlusions, where one part overlaps with another, resulting in

ambiguity in the positions of key points. Additionally, the varying shapes of hands introduce complexity,

as hands can assume diverse configurations, leading to variations in keypoint appearance. Another

issue arises from ambiguities caused by multiple hand poses producing similar visual cues [79]. Moreover,

regular RGB cameras add significant difficulty in accurately estimating hand pose, as they cannot directly

measure the distance or depth of objects in the scene, unlike depth cameras or specialised sensors.

In contrast, the inherent attributes of the hand can be used to ease hand pose estimation and augment

its accuracy. Mechanical constraints and limitations inherent to the human hand delimit possible hand

poses. Furthermore, integrating joint limits, kinematic constraints, and physical plausibility engenders

heightened realism within the estimations. Nevertheless, despite the improvements achieved by anatom-

ical constraints, they can only partially obviate challenges arising from occlusions, varying hand shapes,

and ambiguities.

Abstracting the full complexity of this problem within a computationally solvable model introduces an

added layer of considerations. Hand pose representation encompasses three prevalent methods: 2D Key-

point Coordinates, 3D Joint Locations, and Skeletal Representations. The 2D coordinate approach stands

out for its simplicity and computational efficiency, albeit it suffers from the absence of depth informa-

tion, leading to ambiguities in specific contexts. Conversely, the 3D representation exhibits heightened

accuracy and diminished ambiguity, albeit at the expense of intricate setups and increased computa-

tional demands. As for Skeletal Representations, they balance simplicity and robustness yet relinquish

fine-grained detail. Consequently, selecting a suitable representation hinges upon specific application

requirements, data availability, and the desired levels of accuracy and expressiveness.
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Several widely used datasets and benchmarks have significantly contributed to advancing hand pose

estimation algorithms. Well-known datasets include NYU Hand Pose Dataset [80, 81], MSRA Hand Pose

Dataset [82, 83], BigHand2.2M Benchmark [84], FreiHAND Dataset [12, 85], and Multiview 3D Hand

Pose Dataset [86, 87], and GANerated Hands Dataset [88, 9]. Each dataset has unique characteristics,

such as the type of data (RGB, depth, or both) and the number of annotated 3D hand joint positions.

Evaluation of algorithms on these datasets is typically done using metrics like Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and Percentage of Correct Keypoints (PCK) to measure the

accuracy of the predicted joint locations compared to the ground truth annotations.
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Chapter 3

Literature review

Synthetic dataset generation and hand pose estimation have each evolved within distinct scientific do-

mains, with sporadic intersections in studies where synthetic data has been used for hand pose estimation

techniques but mostly maintaining independent trajectories. Hence, reviewing these two areas along sep-

arate timelines, highlighting common points and common trends when they arise, allows for a better

understanding of each field’s trends. In addition, synthetic data generation for hand pose estimation

systems is explicitly examined in its corresponding subsection.

3.1 Synthetic image dataset generation

Computer Vision systems rely heavily on datasets for training, evaluation, and validation. However,

dataset creation remains a major obstacle due to its demanding resource requirements. In response to this

challenge, the research community has dedicated substantial efforts to produce openly accessible datasets

for these domains. Notable examples include PASCAL VOC [89], Microsoft COCO [5], ImageNet [90],

and NYU-Depth V2 [91], SUN RGB-D [92]. While these contributions have undeniably driven progress

in numerous computer vision problem areas, they cannot cover the totality of challenges, scenarios, and

classes tackled by current research. Consequently, the academic focus has moved to include dataset

creation as one of the main issues to resolve to advance in the field. These new efforts have often focused

on synthetic dataset generation methodologies as one of the ideal solutions.

The exploration of synthetic data generation for computer vision traces its origins to the late 1980s,

producing a long trajectory that has interacted with many of the main goals within this field. Several

review papers and books like Nikolenko [93] or Man and Chahl [94] extensively review the evolution in

the field, starting with early explorations focusing on what the literature defines as low-level computer

vision problems.
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Figure 3.1: Samples from the Microsoft COCO dataset. The COCO dataset is significant due to its
comprehensive and diverse collection of images, serving as a benchmark for training and evaluating
object detection and segmentation models. Adapted from [5].

3.1.1 Early approaches and low-level computer vision

Ground truth datasets are hard to produce and label but are simple to simulate. Therefore, low-level

computer vision problems were some of the earliest fields where synthetic data was successfully used.

Synthetic datasets successfully evaluated optical flow estimation algorithms during the late 1980s and

early 1990s [95, 96]. These first approaches primarily focused on the problem at hand, considering

synthetic data as an auxiliary tool rather than the main focus of research.

Throughout the 1990s, more researchers recognised synthetic data generation as a valid approach for

assessing general and cross-cutting topics in computer vision. For instance, MINPRAN [97] introduced an

estimator capable of effectively fitting models with considerable amounts of outliers, validating the system

using synthetic data. Similarly, Leedan and Meer focused on techniques for estimating solutions to bilinear

forms, frequently found in various computer vision problems involving intricate variable relationships.

Their approaches were consistently validated using synthetic data in several works [98, 99, 100]. By the

decade’s end, Freeman and Pasztor [101] discussed synthetically generated datasets as a comprehensive

methodology for training networks to address various low-level problems, including motion analysis, shape

estimation, and image resolution enhancement.

The growing trend of employing synthetic data for validating low-level computer vision challenges re-

mained consistent throughout the 2000s. Several works introduced estimators based on the Random Sam-

ple Consensus (RANSAC) algorithm [102] for handling data with significant amounts of inliers [103, 104].

Wang et al. [105] achieved precise eye gaze estimation by focusing on a single eye, employing both syn-

thetic and real-world data for validation. Similarly, Von Neumann-Cosel et al. [6] assessed Audi AG’s

lane tracking algorithm by comparing its results with a synthetic ground truth dataset.

However, regardless of the growing weight of synthetic data in computer vision research, concurrent

research questioned the assumption that synthetic ground truth datasets should be considered reliable.

This scepticism arose as different studies around the same time revealed notable differences between

evaluations conducted using synthetic data and real-world data [106]. This topic has remained an ongoing

debate as successive research has delved into synthetic data generalisation capabilities, as discussed in

the sections below.
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Figure 3.2: Von Neumann-Cosel et al. evaluated a lane tracking algorithm by comparing its results with
synthetic ground truth data. [6]

More relevant works added meaningful contributions as the topic became a primary research goal. The

Middlebury dataset [107] is considered a milestone in synthetic data for its meaningful advances in low-

level computer vision. This dataset integrated real-life ground truth lighting data with realistic synthetic

images. Other datasets for low-level problems were also introduced around the same time, tackling

other data types and specific problems. For instance, the Tsukuba CG Stereo Dataset [108] presented

synthetic data alongside ground truth disparity maps, demonstrating enhancements in the quality of

disparity classification. Another example is MPISintel [109], which offers a synthetic optical flow dataset.

Although the initial success of synthetic dataset generation for addressing low-level vision problems

was satisfactory, research in the field has remained active through the years. Hence, novel approaches

have been presented to previously resolved issues, seeking higher efficiency and precision. One example is

Dosovitsky et al. [10]. This paper introduced a sizable synthetic dataset, called Flying Chairs, constructed

using a public 3D chair model database with real-life backgrounds. This dataset was originally used to

train a CNN-based model for optical flow estimation. Subsequent research [110] built upon this dataset

to address image disparity. Besides, more recent work [111] leveraged these datasets alongside other ones

to assess and compare their performance.

3.1.2 Synthetic data for high-level deep learning systems

As computer vision research shifted towards deep learning, state-of-the-art models required larger datasets,

saturating the capacity and resources of real-world dataset production. This phenomenon increased the

prevalence of synthetic datasets and triggered a shift from evaluation to training datasets. This transi-

tion made sense, as high-level computer vision researchers were interested in solving data scarcity and

synthetic data’s capacity to deliver flawless annotations.

During the initial surge of deep learning during the mid-2010s, the suitability of synthetic datasets for

effectively training high-level computer vision problems was uncertain [93]. Nevertheless, Peng et al.

[112] proved there was space for promising results by employing AlexNet to compose a basic detection

system trained with synthetic data. Although those results were never state-of-the-art technology, the

paper gained attention for its significance for synthetic data research. Parallelly, using synthetic videos,
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Figure 3.3: Summary of the synthetic dataset produced by Rajpura et al. This study focuses in a scenario
optimal for synthetic data due to its reduced domain variability. a) 3D models used in the system. b)
resulting synthesised images. Adapted from [7]

Bochinski et al. [113] expanded that approach. These publications also pioneered their methodology,

which has become usual in the field, as they were among the first to use video games for synthetic data

generation.

Meanwhile, Hinterstoisser et al. [114] proposed an innovative approach by engineering neural networks

to use synthetic data effectively. They pointed out that training exclusively on synthetic data did not

yield optimal results because of the differences between computer-generated and real-world images. Thus,

they proposed not training the entire network on synthetic data. Instead, they pre-trained a model using

existing real-world datasets, freezing the lower layers of the model and only using synthetic data to train

the upper layers. This way, the basic image features that work well for real photos remain intact, while

parts responsible for classifying objects would adjust to recognise the desired classes.

Contrarily, instead of focusing on producing the most technologically novel approach, Rajpura et al. [7]

presented the quintessence of the perfect fit for a synthetic dataset. In their work, they built a dataset

to recognise multiple objects on supermarket and fridge shelves. As the scenes and backgrounds for

this problem are not common in existing datasets, and backgrounds and scene compositions are pretty

standardised, this domain proved synthetic datasets conceptually useful when real-world datasets did not

match. This perspective allowed them to focus on synthetic data’s tangible benefits, making this field

worthy of further research.

Continuing with systems with real-world applications, Nowruzi et al. [115] worked on the specific do-

main of urban outdoor environments, with a clear focus towards autonomous driving. They proposed

using multiple datasets, mixing synthetic and real-world data, and a simulation tool to create more

cheaply annotated synthetic data. They outlined a methodology for training neural networks using such

datasets, and their conclusions have been applied successfully to other domains, becoming a go-to source

in synthetic data literature.
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Concurrently, synthetic data research started to obtain profitable results. The work by Hinterstoisser

et al. [116] stands out for achieving outstanding object detection results using only synthetic data.

Their research focused on everyday object detection, like food and medicine packages. A compelling

matter discussed in this paper is their work on domain randomisation, particularly concerning background

images. Importantly, their results show the potential of synthetic data when meticulously generated and

all the data completion requisites are met. This purely synthetic dataset marked a significant milestone,

outperforming a conventional real-world dataset of 2000 images.

However, despite its long trajectory and the importance of detection in the greater field, the potential

of synthetic datasets goes far beyond this domain. Segmentation is another computer vision problem

that can immensely benefit from pixel-perfect synthetic annotations. In this spirit, ShapeNet [117]

indexed over 3 million 3D models classified into 3,135 categories and produced valuable annotations,

including geometric, functional, and physical attributes. This paper became the basis for later efforts to

automate the obtention of more complex annotations. Further work has developed ShapeNet to include

hierarchically segmented parts and other enhancements [118, 119, 120].

These advantages were exploited by McCormac et al. [121] to smartly leverage flawless segmentation maps

without constraining to synthetic data only. Instead, they proposed a system trained with purely synthetic

data, pre-trained with ImageNet. The RGB Convolutional Neural Network trained using their synthetic

dataset marked a significant milestone, as it represented the first instance where synthetic data yielded

such improvement. Their dataset was an expansion of SceneNet [122], an annotated model generator

for indoor scenes. This achievement contributed to the common practice of pre-training segmentation

models using synthetic data.

Regardless of the splendid results of McCormac et al., the conclusions did not provide an infallible

technique capable of successfully training any model with synthetic data. Contrarily, Saleh et al. [123]

presented their work on how some object classes are not equally suited for segmentation synthetic dataset

generation due to differences in their textures.

Consequently, they propose a resourceful approach combining detection and semantic segmentation

masks. Specifically, Mask R-CNN [124] is used for detecting foreground classes and DeepLab [125]

for segmenting background classes. Similarly to [114], this paper incorporated modifying the system’s

pipeline to optimise synthetic data as a pragmatic strategy.

In addition to detection and segmentation, other data types have received attention recently. 3D data,

viewpoint, and depth are becoming increasingly relevant topics for their versatility and the more ro-

bust models produced. They are rapidly being incorporated into the field of synthetic data for being

exceptionally challenging to label manually. Several works have dived into this issue. Aubry et al. [126]

focused on chairs, while Liu et al. [127] did it on indoor objects. Conversely, Gupta et al. [128] produced

synthetic renderings of different objects to train a CNN to detect and segment object instances to align

3D models.

Estimating 3D position and instance orientation is a common goal for 3D data. This problem is often

known as the 6-DoF (degrees of freedom). Hodan et al. [129] have introduced a dataset containing

real-world sensor data alongside 3D models of the object to provide the ground truth poses. However,

it was only with the work of Tremblay et al. [130] that the first state-of-the-art network for 6-DoF pose

estimation trained exclusively on synthetic data was introduced.
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3.1.3 Methods and frameworks for synthesising datasets

All modern synthetic dataset generation techniques for computer vision problems lie in one of four main

categories: manual generation, Generative Adversarial Networks (GANs), parametric models, and video

game or 3D engines. Unlike low-level problem datasets, often generated using mathematical models,

high-level datasets require high-quality 3D models for producing the desired datasets.

Manual generation processes are a direct and uncomplicated approach involving a person arranging

scenes, objects, and environments to create datasets. These techniques are straightforward regarding

needed tools, as they can be executed using any 3D modelling software. However, these methodologies

demand hefty time, particularly for data labelling. As a result, manual generation frequently diminishes

the inherent benefits of data synthesis, namely, primarily dataset scalability and automatic annotation.

However, it is relevant to note that some works, particularly those from the initial stages of this field,

have produced datasets generated through manual approaches [10, 131, 132].

Transitioning from manual data synthesis to automated methods, Generative Adversarial Networks

(GANs) [133] have emerged as the most prominent technique among novel approaches to generate 2D

synthetic images. GANs are a system consisting of a generator and a discriminator confronting each

other to produce optimal synthetic images. GANs find applications beyond image generation, including

AI art [134, 135].

Figure 3.4: Synthetic bird images generated by StackGAN. The examples in the row below are obtained
by running the ones in the top through the Stage II of StackGAN. Adapted from [8]

In GANs, the generators craft instances while the discriminators evaluate their authenticity relative to au-

thentic data. Thus, the quality of the synthetic data steadily advances, progressively reaching seemingly-

authentic outcomes. In an ideal scenario, the generator would eventually obtain images indistinguishable

from authentic data. Nonetheless, practical outcomes deviate from this ideal, as the generator and dis-

criminator always reach an equilibrium. However, this technology currently stands at the core of a fair

share of the state-of-the-art approaches to synthetic data for computer vision [8, 136, 137, 138]. The vast

landscape of GANs, which exceeds 500 proposed variations, [139, 140] has produced many approaches to

generate synthetic data.

On the opposite extreme of data generation control lie parametric models. These synthesising techniques

involve utilising parameterised variables within 3D models to alter elements of rendered scenes. Although

crafting these models is costly and frequently limited by the available data to build the models, they offer

excellent domain control and are easily applicable across diverse domains. Nevertheless, encompassing a

wide enough range of parameters is critical for producing usable datasets. Parametric models have been
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used in several works such as Alken et al. [141], producing a dataset of fish in underwater backgrounds with

variations in positions, rotations, and sizes; or Dahmen et al. [142], who simulated measurements based

on parametric models of real-world objects. Semi-parametric image synthesis has also been explored with

datasets such as Cityscapes [143]. The utility of parametric model data generators lies in their capability

to precisely regulate specific attributes, facilitating the execution of quantitative investigations.

An eminent subset within this category comprises 3D morphable models (3DMMs) [144]. These systems

rely on statistical models to generate 3D features. Since they were first introduced in the late 1990s,

3DMMs have evolved substantially, now integrated into more complex parametric models. They have

had a notable impact on the research of human synthetic dataset generation [145, 146, 147]. Nonetheless,

the use of this technology depends on amassing real-world data. Regrettably, there are no extensive

public datasets fitting these requisites. Moreover, similar real-world datasets tend to produce notably

biased models due to the inherent bias in the base dataset. This problem has already been discussed in

the background chapter of this dissertation. Works have been published discussing how to reduce the

impact of these biases [148, 149].

Lastly, a common approach to generating synthetic data receiving attention and showing promising results

is to reuse existing engines and environments to create synthetic datasets. Nikolenko et al. [150] offer a

comprehensive review of such methods.

Game engines like Unreal Engine and Unity, alongside 3D modelling software such as Blender, have

gained substantial traction, offering a simple alternative to constructing 3D virtual environments [151,

152]. These systems offer simple integration with additional tools—i.e. modelling or video editing—and

interactions with compatible software [153]. Among these solutions, UnrealCV [154, 155] stands out as

an open-source plugin designed for Unreal Engine 4. This tool covers a spectrum of functionalities for

adding variations to the datasets. Unity [156] and Blender [157] offer alternatives for these purposes too.

Video games have also been exploited for producing synthetic image datasets, presenting the advantage

of including complex and increasingly photorealistic ready-to-use environments. This approach has been

used for many different domains such as human detection [158], plane detection [159] or vehicle identifi-

cation [160]. Besides, Richter et al. [161, 162] presented an interesting photorealistic dataset generated

using Grand Theft Auto V, known for its large and realistic urban environment. Modifying software can

be inserted into video games to automatically annotate data being able to obtain image and video data

with pixel-perfect labels.

3.1.4 Synthetic data for hand pose estimation

Generating synthetic datasets of hand poses entails specific issues and constraints that require particular

attention. While it might have received less attention than other prominent topics, this subject has seen

several valuable works published in recent years. This section discusses papers tackling hand pose dataset

generation and other related works that may offer practical insights that can be adapted and applied to

hand poses.

Keskin et al. [163, 164] were among the first works to introduce hand pose synthetic data for training a

hand pose estimation system. Their work focuses mainly on the estimation task—tackled with random

decision forests—using depth synthetic data to simulate the entire pipeline. Although their focus was not
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to produce a synthetic dataset, their early work using parametric models pioneered in this field. Early

attempts did not yield outstanding performance in systems trained solely on synthetic data. However,

Tang et al. [165] and Molina et al. [166] already proved the benefits of employing both real-world and

synthetic data in supervised learning to boost generalisation. Similarly, Deng et al. [167] also used

3D hand synthetic data to augment the existing real-world dataset. In short succession, Madadi et al.

[168] propose a system for estimating hand poses in videos using a two-step approach consisting of a

part-based model initialisation and temporal data constraints. Their system was evaluated using a newly

created dataset along with NYU and MSRA datasets. Their results demonstrated better results than

most approaches at the time.

Zimmerman and Brox [169] presented the first work primarily focused on producing a large-scale syn-

thetic dataset of hand poses. Their results were validated by training a neural network and comparing

its performance against state-of-the-art models. Malik et al. [170] and Mueller et al. [88] followed by

presenting their datasets SynHand5M and GANerated Hands, respectively. Both datasets provided au-

tomatically generated annotations obtained using synthetic generation. However, the latter proposed

a GAN to translate the domain of the synthetic images to that of real-world images. Starting from a

common ground, Cai et al. [171, 36] delves into estimating 3D hand pose from monocular RGB images.

In this paper, synthetic data is produced to solve the issue of depth ambiguity. Their strategy reduces

the need for real-world data by capitalising on transferring knowledge from fully-annotated synthetic

datasets to weakly-labelled real-world datasets.

More recent work has proposed pre-training models using synthetic data and training it on unlabelled

real-world data [172]. This approach, similar to what had been previously proposed by Hinterstoisser

et al. [114], used pseudo-labelling to complete the training process. Conversely, Park et al. [173] has

recently discussed training hand pose estimation models solely with synthetic data, focusing on realism

and physical constraints as the tool to achieve generalisation.

Besides hand pose estimation, other synthetic datasets tackling human images have been proposed for

other computer vision problems. For instance, human-face datasets have been widely discussed due to

their appealing applications, greater variability, and privacy concerns. However, some of these publi-

cations tackle matters that are very relevant for hand pose datasets. For instance, Kortylewski et al.

[33, 149] focus vast portions of their research on the impact of randomisation of pose, camera, lighting,

and background using 3D morphable models. Moreover, they intensely discuss the problem of dataset

Figure 3.5: Samples from the GANerated Hands Dataset. Procedural models were employed to syn-
thetically generate the dataset, which was subsequently processed through a GAN for image-to-image
translation, enhancing the resemblance of features to those found in real hands. Adapted from [9].
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bias and the threats and opportunities that synthetic data arise.

Similarly, synthetic human pose estimation provides conclusions that can easily be imported to this field.

Ragheb et al. [174] demonstrated the viability of recognising human poses through a system trained

with synthetic silhouettes obtained in a virtual environment. Khodabandeh et al. [175] presented GAN

approaches to generate frame sequences with human skeletons. Besides, the PeopleSansPeople [176]

project uses Unity Perception to create labelled synthetic datasets, allowing for great customisation in a

way that could be exploited for hand pose data.

3.1.5 Image realism and generalisation

As previously addressed in this dissertation, generalisation is a prominent issue within the realm of deep

learning systems. This concern notably amplifies when dealing with synthetic data, where the central

objective of these systems lies in achieving effective generalisation to real-world contexts.

Intuition often leads to expect that extreme realism is the optimal answer for achieving real-world gener-

alisation. However, while this belief might be true for some applications, the answer varies from problem

to problem. Mayer et al. [111] came to three fundamental conclusions about synthetic datasets re-

garding this issue. Firstly, additional realism is not always critical, as their not-realistic Flying Chairs

dataset performed correctly. Secondly, although realistic environments are unnecessary, realistic camera

parameters are critical. Finally, they argue that domain randomisation has a more significant impact on

generalisation than realism.

These conclusions are supported and extended by other relevant works. Firstly, it is elemental to note that

what is perceived as ”extreme realism” does not necessarily translate to absolute equivalence with reality.

This concept was explored by Meister and Kondermann [177], who delved into this matter by training two

systems with real-world data and seemingly equivalent synthetic data produced with ray tracing. Their

conclusions showcased that, although both systems yielded approximately equal performance results, the

spatial distribution of errors differed significantly.

These conclusions, however, do not mean that realism does not help generalisation but that researchers

must recognise other important aspects of dataset optimality in balance with realism. This topic was

extensively studied by Movshovitz-Attias et al. [178] surrounding viewpoint estimation. Their conclusions

Figure 3.6: The flying chairs dataset demonstrates strong performance in flow estimation, despite its
non-realistic imagery, highlighting that strict realism isn’t always imperative for achieving favourable
outcomes. [10].
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showed that realistic rendering does help and that performance gaps between models trained with real-

world and synthetic data can be explained by domain adaptation. They argued that any attempt to

generalise models to a different real-world dataset would be just as hard as adapting from a synthetic

one. Tsirikoglou et al. [179] pointed in the same direction by presenting the outstanding performance of

a model trained with a hyperrealistic synthetic dataset produced using Monte Carlo-based lighting and

optics simulation.

The presented conclusions align with established principles of domain randomisation. The underlying

concept suggests that by training on an extensive and diverse dataset, the network will more likely

perform effectively on actual data [180]. This rule remains true even when individual instances within

this artificially generated dataset are unrealistic.

Backgrounds in synthetic datasets have been consistently discussed in the literature concerning this issue.

Understandably, if all instances of a synthetic dataset were positioned in front of a white backdrop, it

would become straightforward for the network to learn how to segment it. However, relying solely on

that dataset would make the resulting model impractical for real-world use. Instead, the learning process

becomes more challenging by incorporating additional objects unrelated to the task, possibly inducing

confusion but making the resulting model more robust. Abu Alhaija et al. [132] and Georgakis et al.

[181] propose methods to add randomisation to backgrounds. The first paper uses random outdoor scenes

and 3D models to create confusion. Conversely, the latter uses indoor scenes.

3.2 Hand pose estimation

Hand pose estimation has witnessed a lengthy trajectory in research due to its extensive potential ap-

plications. Since the earliest approaches, the field has been characterised by continuous exploration and

refinement.

Early stages of research during the 1990s and 2000s focused on 3D hand pose estimation from single-

camera RGB inputs. Resulting works were able to estimate hand poses through complex model-fitting

approaches [182, 183, 11]. These methodologies used models and optimisation methods to approximate

hand poses by aligning the model with observed data. However, these methods required a deep under-

standing of physics, dynamics and kinetics and heavily relied on multiple questionable pre-established

hypotheses. Therefore, despite their conceptual complexity, these methods often obtained poor precision

and a very constrained scope, limiting their viability for real-world scenarios. Subsequent multi-camera

approaches [184, 185] addressed issues related to occlusion and exhibited more satisfactory accuracy levels.

However, they relied on intricate models and expensive optimisation strategies, making them unsuitable

for real-time use.

The arrival of affordable depth sensors made depth-based methods more enticing since depth images

provide richer context that significantly reduces depth ambiguity and helps handle occlusions. Cai et al.

[36] categorise approaches into three primary groups: generative, discriminative, and hybrid. Generative

methods involve model-fitting approaches akin to those previously discussed. However, in this context,

they aim to fit the model to depth data instead of RGB images. Oikonomidis et al. [186] introduced

Particle Swarm Optimisation, an optimisation technique to be used alongside a Kinect sensor. Similar

strategies were proposed by others, producing favourable outcomes [187, 188, 38]. In contrast, discrimi-
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Figure 3.7: Fitting examples presented by Stenger et al. Early research during the 1990s and 2000s
focused on fitting complex models to observed data. [11].

native methods directly predict the 3D joint positions from depth data. For example, Keskin et al. [164]

proposed leveraging Randomised Decision Forests, while Xu and Cheng [189] introduced an intricate

algorithm for selecting and classifying candidates. Hybrid methods have also emerged, amalgamating

generative and discriminative techniques into single systems [190, 191].

The consolidation of neural networks as the central technology for all computer vision tasks rapidly

impacted this field, leading to improvements in performance with no need for depth sensors. These

approaches use different neural network architectures, sharing standard methodologies [192, 193, 194].

Zimmermann and Brox [169] introduced an innovative technique that involves training a neural network

to learn the physical constraints of joints before estimating keypoint locations. Instead, Spurr et al. [195]

proposed using a statistical hand model to ponder likely configurations. Other works have explored the

feasibility of reconstructing 3D hand meshes from RGB inputs and deep learning techniques [196, 197,

198]. More recently, Zheng et al. [199] have shown effective results from 2D RGB data using U-Net, an

architecture developed initially for biomedical computer vision [200].

Despite RGB images regaining prominence due to the enhanced performance of neural networks, the

exploration of depth information has continued to progress concurrently. Ge et al. introduced innovative

methods that leveraged the power of CNNs and RGB-D data [201, 202, 203, 204]. Similarly, other authors

delved into estimation based exclusively on depth information [205, 206]. Furthermore, Wan et al. [207]

explored the outcomes of variational autoencoder (VAE) and generative adversarial network (GAN) for

synthesising depth data, while Mueller et al.[208] proposed a hybrid approach rooted in RGB-D data.
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Chapter 4

Experimental design

This section outlines the experimental methodology used to evaluate the current state of synthetic dataset

generation, as highlighted in the preceding chapter. This dissertation acknowledges the expansive nature

of this field and recognises the need to constrain the experiments to a scale that aligns with the scope of

this research. Consequently, the general goal of this methodology is to determine whether the findings

and assertions discussed in the synthetic dataset generation literature remain valid or exhibit variability

when applied to a specific problem—namely, hand pose estimation, which has unique characteristics and

outcomes. By exploring the correlation between different variations and model performance, this approach

aims to understand how diverse techniques influence models’ performance and ability to generalise.

Consistent with this, the concrete methodology used in this dissertation to assess the feasibility of syn-

thetic data generation is to build a system capable of automatically generating entirely new synthetic

datasets devoid of initial real-world data. The details surrounding the choices for the different components

of this experimental environment are discussed in subsequent sections.

4.1 Methodology

This dissertation employs a methodology for assessing the automatic generation of hand pose datasets

based on crafting distinct versions differing from each other in controlled variations. Initially, a model

is trained solely on real-world data to serve as a benchmark for evaluating the performance of synthetic

datasets. This real-world data is only used for benchmarking purposes and not to train any other model.

Subsequently, diverse versions of the dataset are produced, incorporating the different variations. These

distinct datasets are then utilised to train separate instances of the model. Ultimately, these models

attempt to estimate hand pose from real-world images, obtaining the corresponding accuracy metrics

for each. These metrics facilitate an evaluation of their capability to infer real-world data, enabling an

examination of the impact of variations on accuracy, robustness, and generalisation potential.

This methodology presents a valuable method for assessing the validity of the proposed synthetic data

generation system in training robust models. Leveraging deep learning systems for this evaluation offers

a more precise vantage point than mere attempts at estimating disparities between generated data and
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ground-truth images. As noted by Mayer et al. and Meister and Kondermann [111, 177], the fidelity of

the generated data shall not be the sole determining factor, as seemingly unrealistic datasets might yield

more favourable outcomes. This approach also enables quantitative analysis of the synthetic-to-real gap.

4.2 Hand pose estimation model

The literature review shows a plethora of distinct approaches that have been successfully tested for

estimating hand pose data. Consistently with the motivation of this study discussed and arguments

in previous chapters, the technology employed to estimate hand pose must be a state-of-the-art neural

network. This constraint narrows the potential options, yet a rich array remains for consideration.

While relevant literature explores hand pose estimation using depth data [205, 206], working solely on

depth limits the inclusion of various variations that could present compelling conclusions. Moreover,

a significant driver behind this dissertation is the creation of alternative datasets in scenarios where

acquiring real-world datasets proves impractical. However, depth-only datasets can be automatically

labelled using modern technologies like motion capture, as the absence of image data allows for the use

of patterns purposely printed on the skin. Consequently, this approach would undermine the adequacy

of the example.

Extensive research has also delved into RGB-D data for hand-pose estimation [203, 204, 208]. However,

the reduced number of publicly available real-world datasets of this kind poses an obstacle to building

the benchmark model. Interestingly, this situation perfectly aligns with the problem described as the

research’s motivation.

Nonetheless, predominant research currently focuses on RGB data, achieving promising outcomes [192,

195, 196]. Furthermore, the attributes of existing RGB datasets align more suitably with the scope of

this dissertation, otherwise missing topics like image realism or texture variations.

Among the publicly available datasets referenced throughout this document, four options contain RGB

images profitable for Neural Network training. The GANerated Hands Dataset [88] is unsuitable for this

purpose due to its synthetic nature, hindering the assessment of the synthetic-to-real gap. Conversely, the

NYU Hand Pose Dataset [80] does incorporate RGB data. Yet, it still falls short of being a benchmark

for RGB estimators due to its limited environment randomisation compared to alternative datasets. The

FreiHAND Dataset [12] and the Multiview 3D Hand Pose Dataset [86] meet the requirements for such a

system. Nevertheless, the FreiHand Dataset has garnered greater use within literature and stands as a

pinnacle among current state-of-the-art datasets, making it the optimal choice. This dataset also contains

synthetic data for data augmentation, yet its structure enables the omission of these images.

Lastly, generating accurate ground truth annotations that match the images is imperative for such a

system. Being FreiHand the selected dataset, the generated outputs shall align with the original charac-

teristics of the dataset. Consequently, key point annotations will serve as the designated labels for the

images. Akin to this approach, Zheng et al. [199] recently achieved satisfactory outcomes by utilising

RGB data coupled with 2D annotations. Their proposed system employed a U-Net model [200], proving

this architecture a reasonable experiment option.
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Figure 4.1: Samples of the FreiHAND dataset with their corresponding keypoint configurations. The
suitability of this dataset for the purposes of this dissertation is further discussed in the Experimental
design chapter. Data obtained from [12].

4.3 Synthetic data generation approach

The methodology and hand pose estimation choices presented in the sections above determine several

characteristics the produced synthetic dataset must present. Namely, the resulting system must produce

RGB input data and matching keypoint output data. However, as the review evidences, many distinctive

approaches have been made to synthesise datasets, each with its advantages and particular considerations.

However, all modern synthetic dataset generation techniques for computer vision problems lie in one of

four main categories: manual generation, GANs, video-game-assisted, and parametric models.

Manual generation proves counterproductive, as it often undermines the intrinsic advantages of data

synthesis, particularly the fundamental aspects of dataset scalability and automated annotation. As this

study emphasises the importance of achieving automation, there are better fits for the experiments than

these.

Generative Adversarial Networks (GANs) do not represent the ideal solution for this experimentation

either, as they rely on real-world data to generate datasets. Furthermore, the model selection process

within GANs is obscured and intricately tied to the evaluation network, not allowing for insights into the

variations. Nonetheless, the underlying principles of these technologies draw some conceptual parallelism

with the methodology described in this section, as both use a neural network trained with real-world

data to quantify the quality of synthetic data.

Similarly, the characteristics of video-game-assisted generation make it unfit for this specific experiment.

Although the utilisation of video games sometimes presents an inexpensive approach for synthesizing

high-quality data [151, 152], no existing approach provides an environment compatible with hand pose

estimation, nor do they facilitate the desired degree of control and customisation.

Conversely, contemporary 3D engines do indeed provide the customisation capacities desired [155, 156,

157], making them employable for the objectives of this dissertation. However, delving into the intrica-

cies and challenges of constructing a generation system from scratch adds a compelling element to this
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Figure 4.2: View of the baseline configuration of the synthetic dataset generator, showing the procedural
hand model in an idle position. The purple cirles represent the projected keypoints.

dissertation. This exploration provides a greater understanding of how such a system can be built and

adds greater control to add methods and ideas not contemplated by existing tools.

Hence, parametric models have been selected as the optimal approach for constructing the generation

system—the implementation of the system is detailed in the Implementation chapter. Despite the cost

and occasional constraints associated with crafting procedural models, they allow for superior domain

control and facilitate seamless adaptation of this methodology to other domains.

As previously stated, the addition of proper domain randomisation is likely the most critical matter for

obtaining datasets capable of generalising correctly to real-world environments [180, 149]. Therefore,

based on the existing literature, the variations introduced in the datasets are arm position, arm orien-

tation, joint angles, skin tone, background, lighting, and shininess. The implementation also regulates

the number of variations present within the dataset. This feature holds the potential to offer compelling

insights into the impact of each variation. The physical limitations in hand movement are controlled

using ranges for randomising the 20 degrees of freedom in the human hand.

The generation system employs one single parametric model for producing the datasets. Although this

condition may contrast with the notion of maximising domain randomisation, this decision is due to

resource limitations. This condition delves heavily into the problem of bias introduction in datasets,

which has been thoroughly discussed in machine learning literature and included in this dissertation.

Nevertheless, the prevalent bias stemming from the utilisation of one single model persists across the

entirety of the available options, rendering this concern unavoidable even with the inclusion of additional

models. This circumstance arises due to the heavy predominance of male, caucasian hands among avail-

able models. Although skin tone is tackled by the variations procedurally introduced in the datasets, this

lack of diversity may extend to other aspects like hand shape or physical proportions.

Unfortunately, these same biases extend beyond the 3D model realm. It is worth noting that Frei-

Hand—the selected dataset—harbours identical biases. Consequently, these biases do not jeopardise the

validity of this study as long as they are found on both sides of the experiment. Instead, it effectively nar-

rows the gap in domain transference, enhancing the conclusiveness of the findings of this study regarding
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the synthetic-to-real gap.

Lastly, the method employed for background randomisation holds significant importance when generating

a synthetic dataset, as echoed in numerous articles. Mirroring a strategy that has demonstrated efficacy

across many studies [132, 181, 10], this system adopts the methodology of integrating an additional

dataset as a source of random background images. It uses the UASOL dataset [209] for this purpose.

Initially developed for outdoor depth estimation through single and stereo RGB images, the RGB outdoor

images within the dataset match well the purpose of background randomisation.
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Chapter 5

Implementation

This chapter discusses the implementation aspects of the tools developed for conducting the experiments.

The specific technology choices made throughout the project are detailed to guarantee experimental

transparency and facilitate reproduction for other researchers, regardless of their familiarity with the

subject. The replicability of the experiments described in this dissertation is crucial to its contribution.

It is worth highlighting that code, libraries, and components from external repositories have been incor-

porated into this implementation. These contributions are duly acknowledged in this chapter through

proper citation.

The experiments were executed within a consistent environment, an Apple M1 Pro CPU/GPU [210] op-

erating on macOS Ventura 13.4.1 (c) [211] for the synthetic dataset generation, and Google Colaboratory

environments with V100 GPUs and Ubuntu 18.04 [212] for network training. The synthetic generation

programme was compiled and executed using Xcode Version 14.3.1 (14E300c) [213], which internally uses

the Apple Clang compiler [214].

5.1 Synthetic data generation tool

C++ (C++20 dialect) [215] and OpenGL 4.1 [216] are the primary language and libraries used in the

execution of this project. While alternatives like DirectX or Vulkan offer improved performance [217],

opting for OpenGL was grounded in its flexibility, capabilities, and well-established graphics programming

ecosystem. OpenGL and C++ provide a high level of control for developing customised, efficient code

through its low-level capabilities. Furthermore, despite more contemporary solutions, OpenGL remains

an industry standard with extensive troubleshooting resources, widely recognised and utilised. Lastly,

OpenGL’s cross-platform nature enhances the replicability of the resulting tool.

Alongside OpenGL, this implementation relies on Glew (version 2.2.0) [218] and GLFW (version 3.3.8)

[219]. These libraries provide a more straightforward API for loading and interacting with OpenGL and

its interface components. The selection of these two libraries over alternatives stems from their simplicity

and superior performance in the selected system. OpenGL is a complex graphics API with some operating

mechanisms that can be intricate for inexperienced developers. However, the internal workings of OpenGL
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are not discussed in this document, as they are beyond the scope of this dissertation, and it does not

offer any relevant novelty. Similarly, and for the same reason, trivial computer graphics concepts like

geometric transformations are not to be addressed in this document either.

The core structure of the synthetic dataset generation tool comprises eleven classes implementing different

tasks of the program. This codebase builds upon the code developed for various modules throughout the

degree to which this dissertation pertains. Moreover, the base structure of the code, as well as the code

employed for bone rigging, was constructed using guidance and example code provided by LearnOpenGL

[220]. Although the code has been extensively rewritten, to the point of not sharing the same structure,

remnants of the original code, such as functions and code fragments, persist within this implementation.

This code functions through a primary loop producing a single synthetic image on each iteration. Before

entering the loop, the scene, objects, and variations-to-be are initialised. Within each iteration, variations

are applied to the scene, key points are recomputed, the scene is rendered, and the resulting data is stored

in the dataset directory.

The term scene refers to the arrangement of the elements that contribute to the final image that the

pipeline renders. In this case, the scene encompasses five distinct elements: the hand model, the light

source, the camera, and the background plane. The variations applied to these elements take values

within finite ranges to produce images that match the expected results. Table 5.1 shows the different

ranges that variations of each attribute can take by randomly sampling them. For example, the position

of the hand and the light is determined by shifting it in X, Y, and Z coordinates randomly selected

from a range of choices. Then, the hand is randomly rotated following the same approach. These limits

guarantee that the hand appears correctly on the image, not getting clipped or being too small. It is

worth mentioning that the hand model is normalised to a 1.0x1.0x1.0 bounding box centred in the centre

of coordinates. This allows for transformations to be applied with ease. Likewise, joint rotation angles

are sampled from their corresponding ranges. However, unlike arm rotation, the joint angle ranges limit

movement to realistically provide the 23 degrees of freedom of the hand model depicted in Figure 2.3.

Each joint has its corresponding limits and rotation axes. Last, skin tone, shininess, and background

selection are also controlled by their own ranges.

The selected variations associated with each attribute are generated at the beginning of the execution.

Then, every image takes a random instance among the pre-computed options of each attribute. This

mechanic facilitates control over the dimensions of the variation scope. In other words, it enables to

specify of a precise count of possible values a variation can take. For example, the tool can be configured

to produce a myriad of different positions, orientations and tones, making each image utterly different

from the other, but to constrain that only two different backgrounds can be used through the whole

dataset. This proceeding allows the detailed assessment of the weight that each variation has in the

performance and generalisation of the final model.

However, contrasting with the significant methodological level of detail required to optimise synthetic

datasets, it is noteworthy that implementing most of these variations is technologically straightforward

from the perspective of contemporary computer graphics. For instance, variating the position, orienta-

tion and or joint angles are well-known mechanics not requiring further explanation. Nevertheless, other

options are subject to choices that do need to be documented for replicability. Namely, random back-

grounds are implemented by applying images of the UASOL dataset [209] as textures of a skybox behind

the scene, changing OpenGL’s depth function to avoid clipping it. On the other hand, the colour of the
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skin is altered using functions based on exposure adjusting. Lastly, the light variations are produced by

changing the parameters of the light model: position, intensity, and ambient light.

The geometry transformations and alterations needed to apply these variations are applied to either

vertices or colour within the shaders. These shaders, executed in the GPU to produce the final image,

implement a modification of the widely known Blinn-Phong shading model [221], enriched with the

incorporation of a normal map for detailing. This modification introduces a minimum light level to

prevent extreme shadows that deviate from real-world situations. While not achieving full photorealism,

the Blinn-Phong shading model produces an acceptable approximation for the standards of this project,

especially considering that much of the criticism against it refers to aspects not relevant here—namely,

intricate light interactions and material complexities, neither of which are required in this scene.

Most alterations discussed throughout this chapter are directly programmed in the 3D engine, indepen-

dent of the geometry in use—i.e., geometric transformations and shader parameters. Conversely, applying

other changes relies directly on data built into the 3D model. Skeletal rigging, for instance, needs to be

included in the model to achieve realistic-looking poses. Thus, due to the scarcity of publicly available

hand models possessing suitable characteristics, a commercial model was acquired from the exchange site

CGtrader [222]. This model is highly photorealistic and contains an accurate bone structure that can

be effectively employed for changing the hand’s pose and computing the key points that serve as the

annotations of the dataset, aligning their order with those featured in the FreiHand dataset. The model

and its skeletal hierarchy are loaded into the scene using the Assimp library (version 5.2.5) [223].

Lastly, the tool developed does not feature an elaborate graphical user interface. Instead, it produces a

window displaying the resulting images as they generate. Progress metrics are given to the user through

the terminal, and the dataset’s configuration is achieved by using constants, providing a structured and

predefined approach to dataset customisation.

Attribute Type Minimum Maximum
Finger flexion Float -5.0 90.0
Finger abduction Float -10.0 10.0
Thumb flexion Float -80.0 10
Thumb abduction Float -30.0 30.0
Wrist flexion Float -90.0 90.0
Wrist abduction Float -30.0 30.0
Wrist pronation Float -60.0 60.0
Position X Float -0.3 0.3
Position Y Float -0.3 0.5
Position Z Float -0.4 0.4
Rotation angles Float -90.0 90.0
Skin tone Float 0.05 2.0
Light XYZ position Float -5.0 5.0
Light intensity Float 5.0 40.0
Shininess Float 1.0 50.0
Image Integer 0 14042

Table 5.1: Type and range that the variations of each attribute can take in the synthetic data generation
process.
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5.2 Hand pose estimation

The evaluation step operates independently of the data synthesis process. Consequently, relying on

available code bases for training the hand pose estimation models is sufficient, requiring minimal compat-

ibility adjustments. The primary requirement is to structure the data in a format that can be seamlessly

integrated into the system without extensive modifications.

Python (version 3.9.6) [224] is the language of choice for the training process, alongside the machine

learning library PyTorch [225]. Python is currently the most prevalent choice of language for machine

learning purposes. In addition, PyTorch stands out among contemporary deep-learning libraries due

to its simple and transparent API. These characteristics significantly ease interaction with the model,

making the training and inference less burdensome.

While adapted to accommodate the generated datasets, the most significant share of the code for train-

ing and inferring the Shallow UNet network has been obtained from the repository authored by Olga

Chernytska [226]. This project, publicly available on GitHub, aligns with the choices outlined in the Ex-

perimental Design chapter of this dissertation. In particular, it uses a modified UNet model for training

a neural network to estimate hand poses. The reasoning behind the training choices is comprehensively

discussed in the author’s Master’s Thesis [227].

In this code, the training process employs the Intersection over Union Loss, which is particularly suited

for tasks involving geometric differences as an accuracy criterion, aiming to minimise disparities. The

chosen optimiser is the Stochastic Gradient Descent, employed to prevent training issues. To guarantee

convergence despite SDG, the Learning Rate Scheduler is used. This scheduler continually evaluates the

validation loss for plateaus throughout the training, indicating a slowdown in the model’s progress. In

those cases, the scheduler reduces the learning rate enabling the model to make more nuanced adjust-

ments.

In addition, an analogous code is used to infer and evaluate the produced models. This program loads

the trained models, feeds an unseen test set of the FreiHand dataset to the trained model, and compares

the outputs with the ground truth data.
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Chapter 6

Results

This chapter presents the resulting metrics and results of the experiments. The implications and sig-

nificance of these findings are subsequently examined in the Discussion chapter. The numerical results

showcased stem from thorough experimentation, precise data gathering, and meticulous analysis.

Since the desired output of hand pose estimation is the correct identification and location of the key points,

the system needs to assess the validity and accuracy of its predictions by using point-to-point comparisons.

Therefore, this chapter uses the Mean Euclidian Distance, Mean Square Error, and Percentage of Correct

Keypoints as the result metrics. For this project, the criterion of keypoint correction has been established

as a deviation of 5 pixels or less from the ground truth data.

The process of applying different amounts of variations to each attribute has produced a total of 41

different datasets, which have been used to infer synthetic and real-world hand images.

6.1 Joint angles

Figure 6.1 shows that the ability of the trained models to estimate different hand positions, without any

other variation present, remains close to 100% across all cases, regardless of the number of introduced

variations. Only a slight decrease in the maximum value of the Figure is observed, where all images have

completely distinct positions from each other. Similarly, in these cases, the Mean Euclidian Distance and

Mean Squared Error remain stable, well positively below the benchmark.

As shown in Figure 6.2, the results of generalising this model to infer real-world data are much less

favourable. In this Figure, the three metrics also remain relatively stable, despite the various additional

variations in hand joint rotations. However, the values remain negative in this case, with high error and

low correct points. Fluctuation is observed in the plots, although no evident positive or negative trend

exists.
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(a) (b)

Figure 6.1: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying joint angle variations. a) Solid blue line: Mean Euclidian Distance; solid orange line: Mean
Squared Error; dashed blue line: Benchmark MED (Real-world data model); dashed orange line: Bench-
mark MSE (Real-world data model). b) Solid green line: Percentage of Correct Keypoints; dashed blue
line: Benchmark PCK (Real-world data model).

(a) (b)

Figure 6.2: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
joint angle variations. The meaning of a) and b) remain as seen in Figure 6.1.

6.2 Position

Once again, Figure 6.3 presents similar results to those shown in Figure 6.1, especially regarding the

curve’s stability. While this figure does not display results as extreme as in the case with no variations,

the plot illustrates that the detection quality remains relatively steady, slightly hinting a downward trend.

As for the impact of positional variations on the detection quality using real images, a modest contrast

regarding the previous Figures is tangible in Figure 6.4. In this case, albeit minor, an upward trend in

hand pose estimation becomes apparent as more variations are introduced. Nevertheless, the attained

data remains quite low. Such a small variation could be easily ignored, but being the magnitudes in that

metric so low, they must be taken into account.
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(a) (b)

Figure 6.3: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying hand positions. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.4: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
hand positions. The meaning of a) and b) remain as seen in Figure 6.1.

6.3 Rotation

In contrast to the modest variations displayed by the previous plots, Figure 6.5 demonstrates a clear dete-

rioration as additional rotations are introduced. The total difference observed amounts to approximately

a 60% reduction in the percentage of correct key points. Furthermore, concerning the Mean Euclidean

Distance and Mean Squared Error, they exhibit changes in the opposite direction that align perfectly

with this decline in detection quality.

Conversely, these variations seem to have little to no impact on detecting real-world images, as the metric

trends remain highly stable across the diagram in Figure 6.6. While Figure 6.5 showcased a notable decline

in quality, this second plot shows values that persist as poor outcomes with little alteration.
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(a) (b)

Figure 6.5: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying hand orientations. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.6: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
hand orientations. The meaning of a) and b) remain as seen in Figure 6.1.

6.4 Skin tone

Figures 6.7 and 6.8 depict an interesting behaviour when considering the four plots together. Firstly,

the Mean Euclidean Distance and Mean Squared Error show a consistent level of stability as skin tone

variations are added to the dataset. However, the percentage of correct key points showcases a notable

contrast, as a modest yet somewhat erratic improvement can be seen in the plot.

Despite this increase in the PCK when inferring synthetic images, the results do not translate into

comparable outcomes in the context of real-world images. In Figure 6.8, a quite stable behaviour can be

seen throughout the different amounts of orientations. This pattern echoes observations made in other

analogous cases, further emphasising the distinct nature of real-world image detection challenges.
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(a) (b)

Figure 6.7: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying skin tones. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.8: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
skin tones. The meaning of a) and b) remain as seen in Figure 6.1.

6.5 Light

Figure 6.9 portrays intriguing behaviour, whereas while Figure 6.9a exhibits minimal variations, Figure

6.9b displays highly erratic changes, albeit with a positive trend. However, this trend requires a more

comprehensive discussion to make sense of it in the Discussion chapter.

In this instance, Figure 6.10 does exhibit a more direct correlation with Figure 6.9. While there is no

distinct positive trend in this case, we can indeed discern the erratic behaviour seen in the previous graph.

However, this behaviour occurs on a much smaller scale due to its considerably lower overall values.
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(a) (b)

Figure 6.9: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying light settings. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.10: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
light settings. The meaning of a) and b) remain as seen in Figure 6.1.

6.6 Shininess

Figure 6.11 again illustrates erratic behaviour, albeit with a positive trend regarding PCK. On the other

hand, the error fluctuates around a consistent value, demonstrating a pattern that suggests a growing

trend, although the final value decreases once more. This behaviour gives rise to uncertainty as to whether

it indicates a rising or stable trend.

Figure 6.12, however, aligns with the trends observed in previous figures about real-world image inference.

Once more, the values remain almost unchanged, despite alterations in the synthetic dataset variations.
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(a) (b)

Figure 6.11: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying shininess levels. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.12: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
shininess levels. The meaning of a) and b) remain as seen in Figure 6.1.

6.7 Background

Figure 6.13, concerning the introduction of random backgrounds in synthetic images, undeniably exhibits

the most erratic behavior among all variables depicted in graphs within this section. With the inclusion

of random backgrounds, the error experiences a noticeable surge, although gradually receding as more

backgrounds are added to the image. Similarly, the PCK demonstrates a corresponding behavior, albeit

in reverse.

Figure 6.14 once more presents a stable behavior, with minimal alterations upon the introduction of

random backgrounds, both in terms of errors and the percentage of correct key points.
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(a) (b)

Figure 6.13: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying background variations. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.14: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
background variations. The meaning of a) and b) remain as seen in Figure 6.1.

6.8 Dataset size

Figure 6.15, undeniably exhibits the most notorious performance increase among all variations, taking

the PCK metric from a 35% to an outstanding 78%.

Figure 6.16 shows an increasing tendency as dataset size increases, although the scale of the improvement

is very limited.
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(a) (b)

Figure 6.15: Comparison of accuracy metrics to infer unseen synthetic data on synthetic datasets with
varying dataset sizes. The meaning of a) and b) remain as seen in Figure 6.1.

(a) (b)

Figure 6.16: Comparison of accuracy metrics to infer real-world data on synthetic datasets with varying
dataset sizes. The meaning of a) and b) remain as seen in Figure 6.1.
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Chapter 7

Discussion

This section discusses the implications of the outcomes presented in the Results section. Since the results

have two distinct trends, separate discussions about hand pose estimation from synthetic and real-world

images are conducted. This disparity aligns with the hypotheses put forth by some works discussed in

the literature review, which stress the criticality of the synthetic-to-real gap.

However, despite this distinction, each section also includes cross-observations, contributing context and

noteworthy insights for effectively interpreting the data and understanding the complete topic.

7.1 Hand pose estimation from synthetic inputs

The results obtained from the experiments provide a deeper understanding of the intricacies of building

a synthetic data generation system and how the produced data must correlate with an equivalent dataset

acquired from the real world. In certain instances, the results either confirm or refute hypotheses formu-

lated early in this document. In other cases, the data introduce new questions and reflections, enabling

to draw of unexpected conclusions from the experiments.

Figure 6.1 serves as an example of this phenomenon. This plot shows an almost impeccable ability

to estimate the pose of synthetically generated hands from images accurately. This unexpected result

imparts insightful information in a manner not initially envisaged. It is essential to acknowledge that the

primary intent behind these initial datasets was precisely to showcase overfitting scenarios to improve

the model’s performance beyond that point. However, the resultant outcome diverges from the expected

result. While it holds true that these datasets exhibit minimal variability, rendering them exceptionally

susceptible to overfitting, these models show an ability to infer unseen data that goes beyond expectations.

This behaviour suggests that the neural network possesses surplus capacities to discern patterns within

these synthetically generated images. Despite its non-apparent nature, this conclusion is promising.

It prompts the inclination to believe these synthetic images inherently encapsulate some requisites to

function as viable inputs eventually.

Figure 6.3 further prompts thinking in that direction, as by introducing numerous additional variations, a

consistently higher accuracy than that of the real-world dataset is maintained, even for previously unseen
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images. Similarly, although depicting very different results, Figure 6.5 suggests interesting information

from which conclusions can be drawn. Examining the FreiHand dataset reveals a deliberate and evident

absence of images featuring substantial occlusions. The tool proposed in this dissertation for synthetic

dataset generation does not incorporate any such restrictions, resulting in the inclusion of exception-

ally challenging or even impossible images to estimate. This contributes insignificantly to training and

introduces deceptive images into the test set.

The approach of consciously removing specific characteristics from the dataset suggests something quite

valuable when generating datasets and could be a consideration for potential system enhancements in the

future. Inputs lacking pertinent information required for generating output are not desirable within the

dataset. While it might seem counterintuitive, as they represent real-world examples a neural network

could encounter, on the other hand, if there is no discernible pattern from which to learn, the only likely

outcome is the potential confusion of the neural network.

In addition, Figure 6.7 presents an intriguing question: Why does the introduction of variations in skin

tone lead to improved detection of synthetic inputs? It is not apparent that augmenting variability within

other aspects of the dataset could enhance precision on top of making it more generalisable, but such an

outcome is actually possible.

However, this circumstance gains more clarity by observing Figure 6.9. While they may not possess

the same form, these two figures have a certain parallelism. In both cases, they display a scenario of

high volatility in detection quality metrics, yet they share an overall increasing trend: as new variations

are introduced, detection quality slowly improves. The reason behind this occurrence likely resides in

colour variability within the hand, as both lighting and skin tone variations fundamentally involve colour

differences. A similar rationale presumably underlies the other two graphs as well. More significant

variability compels the neural network to identify common patterns, potentially pushing it to find a

better-fitting minimum during the gradient descent process. In easier problems with less variability, a

different, less optimal, relative minimum might have been reached.

All the figures show an evident instability in the metrics obtained by inferring synthetic datasets in

models trained on themselves. These outcomes indicate that the system employs a logic for generating

variations that are not optimal for achieving the best detection. The craft of data selection is a widely

recognised concept in Machine Learning, involving data manipulation to attain an optimally suited set

for our system, despite it not necessarily being a flawless reflection of the real world it aims to model.

In this case, certain variations have been introduced, which might not be optimal to include: consider

specific combinations of rotations and positions that obscure parts of the hand, specific lighting parame-

ters that hinder accurate element differentiation, or variations that render the images less realistic and,

consequently, less readily extrapolated to the real-world domain.

The observation regarding the dataset size increase illustrated in Figure 6.15 depicts the relationship

between dataset size and performance, and signifies a remarkable breakthrough in this dissertation. As

the dataset size expands, the dataset’s ability to produce better models improves as well, substantiating

the notion that the path of scaling the solution could potentially lead to achieving genuine generalisation.
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7.2 Hand pose estimation from real-world inputs

This project’s main objective is to transfer the data and patterns from the synthetic domain to the real-

world domain, enabling the use of models trained with synthetic data for real-world problems. Within

the process of assessing the feasibility of such a tool, there are specific expected and unexpected outcomes

that the experiments’ results have pointed out.

The behaviour observed in Figures 6.2 and 6.4 is precisely the expected behaviour for those datasets, as

the synthetic data intentionally incorporates minimal variations, making it challenging to infer real-world

hand position data in any way.

However, an intriguing observation is that Figure 6.2 achieves better results than Figures 6.4 and 6.6.

This behaviour can likely be attributed to an uneven spatial distribution of data in the FreiHand dataset.

The synthetic datasets in Figure 6.2 consist of data with variations limited solely to join angle settings.

In other words, the hand is always centred on the image and consistently facing away from the camera.

A model trained on such data exhibits a distinct tendency to produce key points with a similar pattern

due to the overfitting induced by the high data repetition. Therefore, the fact that Figure 6.2 displays

better precision metrics than Figures 6.4 and 6.6 likely indicates that images close to the original hand

position in the synthetic dataset are much more prevalent than others. While not directly leading to

immediate system functionality, these types of observations can contribute to adapting the generated

datasets to desired domains to refine their outcomes.

However, the one genuinely conclusive conclusion that can be drawn from the results obtained is that

models trained on these artificial datasets cannot at all bridge the synthetic-to-real gap. All resulting

graphs from inferring real-world images with models trained on synthetic images exhibit inferior results,

resulting in an absolute inability to detect hand positions in real-world images. This possibility had

already been anticipated in the literature review, as many authors suggested that this was the major

challenge encountered in synthetic dataset creation. The obtained data corroborate these hypotheses.

Nevertheless, the Figures show that the different numbers of variations barely impact performance metrics,

which consistently remain at minimal levels. The case most notably inducing a change is in Figure 6.14,

where it observed that random backgrounds seem to impact the obtained results. However, these remain

at levels far from being considered a successful system for hand pose detection in real-world images.

The mention of the dataset size increase in Figure 6.16 suggests that as the dataset size grows, there is

potential for promising results to be achieved. This could imply that larger datasets might lead to better

performance, more accurate predictions, and improved outcomes in the context of generalisation to the

real-world domain. However, it is noted that despite the potential benefits, the exploration of this path

has been limited due to resource and time constraints.
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Chapter 8

Conclusions

The advancement of computer vision systems has brought about a revolution driven by the formidable

capabilities of deep neural networks. However, as systems grow in complexity, the demand for exten-

sive datasets becomes urgent. Creating these large datasets with the required characteristics presents

significant labour and resource challenges.

Consequently, the exploration of procedural generation techniques has gained relevance as a means to

overcome this hurdle. Controlled variations impact the quality of detection and the reliability of the

resulting system, although often proving insufficient for bridging the domain gap.

This dissertation delves into these issues within the context of hand pose estimation. To assess the efficacy

of the generated datasets, an advanced computer vision system is trained to detect key points in hand

images, leveraging both the procedurally generated dataset and traditionally annotated datasets. Com-

parative analyses then scrutinise the system’s performance on real-world data, examining the influence

of procedural variations on accuracy, robustness, and generalisation capabilities.

The findings in this dissertation can be used as a starting point towards building a generic pipeline capable

of generating synthetic datasets from automated variations and realistic 3D models. However, further

work needs to improve in bridging the synthetic-to-real gap to create usable datasets. This conclusion

echoes discussions in the literature and is reinforced by the literature review within this dissertation:

domain transfer remains the major challenge in synthetic dataset generation, a claim supported by the

results presented here.

These conclusions pave the way for future research to build upon this approach, specifically focusing

on minimising this gap and achieving effective generalisation from synthetic to real-world data. This

research has provided valuable insights into the intricacies of constructing such systems and an in-depth

understanding of the history of the field and current approaches.
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Figure 8.1: Detail of a resulting dataset with random backgrounds.

8.1 Limitations

This section acknowledges the existing limitations of the research due to scope, resources, and time

constraints. These limitations have influenced the extent of the research and may affect the implications

of the findings.

First, this project has inevitably limited the range of variations explored within the study due to the

limited resources and time available. Generating synthetic datasets and training neural networks are

resource-intensive processes. The computational demands and time required to generate and process

these datasets have posed significant challenges. Therefore, simplifications had to be applied to some

seemingly minor aspects of the project, and variation ranges were limited to reduce the number of

examples to compute. This limitation could potentially have impacted the robustness of the trained

models.

Besides, as discussed, using one 3D hand model in this project introduces inherent bias. Although

several variations may have reduced these biases, the selected 3D model cannot capture the full diversity

of real-world hand variations.

Finally, combining all the elements in the pipeline and producing the final image may also introduce

limitations to the system by adding visual bias, cues and artefacts. On the one hand, all simplified

shading models introduce unrealism to some degree. Secondly, the images produced are small JPG

images (224x224 pixels) to match the original dataset and reduce execution times. However, small image

rendering alongside JPG compression produces artefacts that can affect detection.
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Chapter 9

Future work

The central finding of this dissertation underscores that closing the gap between synthetic and real

domains is the path to achieving the collective objectives within this research domain. While numerous

research lines are currently open, there is space for potential additions to the methodological framework

presented in this dissertation.

Firstly, several improvements have already been introduced across sections of this dissertation. The main

improvement would be to leverage the apparent benefit of increasing the dataset size to obtain more

generalisable datasets. To train these datasets, important processing resources are needed.

Other options include the incorporation of more realistic shaders, introducing additional variations, inte-

grating more 3D models to mitigate bias and enhance generalisation, addressing the challenge of inefficient

data discarding, and more.

Moreover, this research can be continued by employing statistical methodologies to find the intricate

interrelationships and collective impacts of diverse variations on generalisation capabilities. A deeper

comprehension can be obtained by treating the research as a singular multi-dimensional space.

Another strategic step involves subjecting the synthetic data generator to evaluation using diverse neural

network architectures. This investigation could uncover better performance of these architectures to the

specific problem.

Given the importance of background selection in the literature, a novel direction could research the

generation of randomized backgrounds as integral components of the scenes instead of selecting pre-

existing backgrounds. Similar techniques, successfully employed in texture generation, have demonstrated

their potential to train systems to recognise shapes.

Finally, strategically incorporating Generative Adversarial Networks (GANs) could be pivotal. By em-

ploying GANs, the images generated could undergo domain transfer, aligning them more closely with the

patterns exhibited by real-world data.
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pp. 889–910, 2005. [Online]. Available: https://ems.press/doi/10.4171/rmi/439

[21] G. Philipp, D. Song, and J. G. Carbonell, “The exploding gradient problem demystified -

definition, prevalence, impact, origin, tradeoffs, and solutions,” Apr. 2018, arXiv:1712.05577 [cs].

[Online]. Available: http://arxiv.org/abs/1712.05577

[22] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

requires rethinking generalization,” Feb. 2017, arXiv:1611.03530 [cs]. [Online]. Available:

http://arxiv.org/abs/1611.03530

[23] Z. Du, X. Li, and J. Wu, “Accelerating the Training of HTK on GPU with CUDA,” in 2012 IEEE

26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, May

2012, pp. 1907–1914.

Procedural Generation of Datasets for Training Hand Pose Estimation Systems Page 57 of 75

http://arxiv.org/abs/1909.04349
https://www.hindawi.com/journals/cin/2018/7068349/
https://www.hindawi.com/journals/cin/2018/7068349/
https://www.sciencedirect.com/science/article/pii/S0925231220311619
https://www.worldscientific.com/doi/10.1142/9789814434102_0012
https://www.worldscientific.com/doi/10.1142/9789814434102_0012
https://ems.press/doi/10.4171/rmi/439
http://arxiv.org/abs/1712.05577
http://arxiv.org/abs/1611.03530


[24] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans, and P. Gupta, “Optimizing

Multi-GPU Parallelization Strategies for Deep Learning Training,” IEEE Micro, vol. 39, no. 5, pp.

91–101, Sep. 2019, conference Name: IEEE Micro.

[25] G. Albuquerque, T. Lowe, and M. Magnor, “Synthetic Generation of High-Dimensional Datasets,”

IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2317–2324, Dec.

2011, conference Name: IEEE Transactions on Visualization and Computer Graphics.

[26] S. Mehta, M. Dawande, G. Janakiraman, and V. Mookerjee, “How to Sell a Dataset?

Pricing Policies for Data Monetization,” Rochester, NY, Aug. 2019. [Online]. Available:

https://papers.ssrn.com/abstract=3333296

[27] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in Deploying Machine Learning: A

Survey of Case Studies,” ACM Computing Surveys, vol. 55, no. 6, pp. 114:1–114:29, Dec. 2022.

[Online]. Available: https://dl.acm.org/doi/10.1145/3533378

[28] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A review of feature selection

methods on synthetic data,” Knowledge and Information Systems, vol. 34, no. 3, pp. 483–519,

Mar. 2013. [Online]. Available: https://doi.org/10.1007/s10115-012-0487-8

[29] A. Gonzales, G. Guruswamy, and S. R. Smith, “Synthetic data in health care: A narrative

review,” PLOS Digital Health, vol. 2, no. 1, p. e0000082, Jan. 2023, publisher: Public Library

of Science. [Online]. Available: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.

pdig.0000082

[30] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Data augmentation

using synthetic data for time series classification with deep residual networks,” Aug. 2018,

arXiv:1808.02455 [cs]. [Online]. Available: http://arxiv.org/abs/1808.02455

[31] W. Jiang, K. Zhang, N. Wang, and M. Yu, “MeshCut data augmentation for deep learning in

computer vision,” PLOS ONE, vol. 15, no. 12, p. e0243613, Dec. 2020, publisher: Public Library

of Science. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0243613

[32] P. Kaur, B. S. Khehra, and E. B. S. Mavi, “Data Augmentation for Object Detection: A Review,”

in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2021,

pp. 537–543, iSSN: 1558-3899.

[33] A. Kortylewski, A. Schneider, T. Gerig, B. Egger, A. Morel-Forster, and T. Vetter, “Training

Deep Face Recognition Systems with Synthetic Data,” Feb. 2018, arXiv:1802.05891 [cs]. [Online].

Available: http://arxiv.org/abs/1802.05891

[34] D. Rankin, M. Black, R. Bond, J. Wallace, M. Mulvenna, and G. Epelde, “Reliability of

Supervised Machine Learning Using Synthetic Data in Health Care: Model to Preserve Privacy

for Data Sharing,” JMIR Medical Informatics, vol. 8, no. 7, p. e18910, Jul. 2020, company:

JMIR Medical Informatics Distributor: JMIR Medical Informatics Institution: JMIR Medical

Informatics Label: JMIR Medical Informatics Publisher: JMIR Publications Inc., Toronto,

Canada. [Online]. Available: https://medinform.jmir.org/2020/7/e18910

[35] Q. D. Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. L. Saux, and D. Filliat,

3D Hand Gesture Recognition Using a Depth and Skeletal Dataset. The Eurographics

Association, 2017, accepted: 2017-04-22T17:17:41Z ISSN: 1997-0471. [Online]. Available:

https://diglib.eg.org:443/xmlui/handle/10.2312/3dor20171049

Page 58 of 75 Borja Garćıa Quiroga
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Appendix A

Use of AI tools

The AI-based tools Grammarly and ChatGPT have been employed, at varying degrees, to assist the

production of this document, as specified below these lines.

Grammarly has been employed as the primary grammar check tool throughout the document to avoid

grammar and orthography errors.

ChatGPT has been employed in specific document fragments to clarify the confusing text. It has been

used in fragments containing intricate information and complex ideas requiring clear expression. This

tool has been used to explore alternative, easier-to-read constructions in cases when the writer was not

satisfied with the clarity or style of a fragment.
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