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Automated harvesting is becoming increasingly important as the number of farmers de-
clines and farming efficiency becomes increasingly critical. One of the most challenging tasks
in this field is strawberry harvesting. These fruits can be difficult to spot for machines, and
harvesting them at the wrong maturity level can significantly impact their quality for con-
sumption. In this report, we discuss the current state of the art in counting and estimating
the ripeness of strawberries and evaluate the performance of three different methods using
the same dataset. Our goal is to identify the most effective methods to perform these tasks
accurately, which can aid in developing effective robotic harvesting systems.

0 Introduction

With the decrease in the number of farmers that are not
replaced (Ritchie [23]) and the improvements of robotics
with new farming robots and automated farms as Cheng et
al. or David et al. [4][24], we need more efficient computer
vision methods to be able to make these robots effective,
so that they can replace human work.

One of the most challenging tasks in automated harvest-
ing is the harvest of strawberries. The first reason is that
there are several on a small plant, and they are often hid-
den, making them difficult to find and pick (Mahmood et
al. [16]). However, harvesting them too late when they are
ripe will cause them to be overripe when they reach the
consumer, and harvesting them too early will also make
berries not proper for consumption. The sweet spot for har-
vesting them is when they are partially ripe (Chandy [3]).
Therefore, automated strawberry harvesting needs accurate
counting, localisation and ripeness estimation methods. In
this report, we discuss the state of the art of algorithms
for counting and estimating ripeness, and we will imple-
ment three of them and compare their performance using
the same dataset.

1 Background

Current methods for counting and estimating the
ripeness of strawberries were reviewed to give a good
overview of the state of the art. The review on counting
methods was not restricted to strawberry counting because
the algorithms for object detection are usually generalis-
able to many kinds of objects. However, efforts were made
to find specific techniques to improve these algorithms for
strawberry counting and segmenting tasks, specifically.

On the other hand, for ripeness estimation, the focus was
on strawberry ripeness estimation because, as mentioned
earlier, this task is particular to this fruit.

Papers using different approaches, ranging from naive
algorithms to machine learning and deep learning ap-
proaches, were researched and reviewed to compare the
advantages and limits of each approach.

1.1 Review

This project has two key components: object counting
and classification. Object counting and object classification
are the two main components of this project. These are rel-
evant tasks in computer vision with multiple applications
and have been widely studied for many real-world appli-
cations. In this section, we break down different proposals
made for these fields.

1.1.1 Object counting

Object counting involves estimating the number of oc-
currences of objects in an image or video. It has received
considerable attention since the early stages of computer
vision. Most current techniques are split into three cate-
gories: 1) regression counting, 2) detection counting, and
3) clustering counting. Early approaches tend to focus on
clustering-based methods due to computing power con-
straints. However, recent years, research has focused more
on detection methods because of their broader applications
and advantages. In this paper, we focus on the latter.

Li et al. [14] provide an extensive review on object
counting substantiated by more than 50 articles published
in the past decade. Focused on underwater computer vi-
sion, the authors analyse and compare the pros and cons of
major counting methods and their applications. The review
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also identifies current trends in the field and challenges to
be solved.

Cholakkal et al. [5] proposed a new approach for den-
sity map estimation called the “image-level lower-count
(ILC)” method. The approach used a pre-trained ResNet50
network and had two output branches: image classification
and density branch. The image classification branch esti-
mates the presence or absence of objects. In contrast, the
density branch predicts the global object count and the spa-
tial distribution of objects by constructing a density map.
The network has a fully convolutional architecture, replac-
ing pooling layers with 1x1 convolutions.

A similar architecture is proposed by Laradji et al.
[17] Their model extends what was previously introduced
by Shelhamer, Long et al. [26] to perform object counting
and localisation. Authors propose and implement a new
loss function called the localisation-based counting loss
(LC)”, and the proposed model is referred to as "LC-FCN”.
It is designed to handle point supervision, a weak form of
annotation in which only the centre points of objects are
labelled.

In Ofioro-Rubio and Lépez-Sastre [6], the authors tackle
object counting in images through regression neural net-
works for counting. They propose two novel convolutional
neural networks (CNN): the Counting CNN (CCNN) and
the Hydra CNN. Both methods use density map estimation
to compute the regression, although they vary in the geom-
etry awareness capabilities and training data.

Both Zhou et al. [29] and Ge et al. [9] propose using vari-
ants of the Faster R-CNN specifically for strawberry detec-
tion. The first describes the method and calls it “Improved
Faster-RCNN”, while the latter uses the "Mask-RCNN" al-
gorithm. Faster R-CNN is a two-step object detection algo-
rithm that generates regions of interest and then classifies
or discards the objects within those regions. Each modifi-
cation adds an improvement: the first one proposes specific
modifications to make the system more robust for detect-
ing strawberries in ground-level RGB images. The second
adds an additional segmentation output to Faster R-CNN
that allows extraction of the exact information from im-
ages to perform further analysis. A different deep-learning
network is proposed by Wu et al. [28] for strawberry detec-
tion and counting, as well. The U2-Net is used to segment
strawberries and backgrounds in images.

YOLOVS is used in Fan et al. [8] to detect—and,
therefore, potentially count—strawberry instances.
The YOLO series—an acronym for ”You Only Look
Once”—(Redmon et al. [19]) has been one of the most
discussed and cited recognition algorithms in recent years.
YOLO is a single-stage convolutional neural network
(CNN) with fast and powerful detection capabilities.
YOLOVS (Jocher et al. [13]) is the fifth version of this
series of algorithms and focuses on improving speed while
guaranteeing accuracy.

1.1.2 Ripeness classification

Ripeness classification is the process by which the ma-
turity level of a vegetable or fruit—in this paper, a straw-

berry—is determined. Although ripeness can be detected
using various methods, this paper focuses exclusively on
computer vision methods.

These methods classify instances among various classes
that can grade from unripe to fully ripe and even rotten.
Standard feature extraction techniques for ripeness classi-
fication are colour, texture, or shape analysis, as well as
class-based detection or segmentation. Approaches have
been made to different fruits and vegetables. However, fea-
tures are highly particular to each species. This review fo-
cuses on strawberry ripeness classification.

The methods reviewed can be classified into three
groups: 1) class-based detection, 2) machine learning clas-
sification, and minorly 3) algorithmic classification.

A wide variety of approaches can be found in systems
belonging to the same group. For example, Fan et al. [8]
(YOLO) and Ge et al. [9] (Mask R-CNN) produce sys-
tems that classify the ripeness level of each instance in
detection time, returning for each instance the correspond-
ing label. Both approaches classify ripeness into four cat-
egories. Conversely, Zhou et al. [29], although belonging
to the Faster R-CNN group and closely related to Ge et al.
[9], only collected ripe fruit by training the network with
an all-ripe dataset.

Many Machine Learning classifiers have been proposed,
varying broadly in algorithms and feature selection. For ex-
ample, Anraeni et al. [1] and Indrabayu et al. [12] use the
RGB features of the berry to train a 7-Nearest Neighbours
(K-NN) and an SVM with Radial Basis Function (RBF),
respectively. Both systems use three classes for classifica-
tion: unripe, partially ripe, and ripe. Thakur et al. [27], in-
stead, widen feature selection to include size and shape in
addition to colour to train a Convolutional Neural Network.

Although using a Machine Learning classifier, Shao et
al. [25] propose a much more sophisticated feature extrac-
tion algorithm. First, hyperspectral imaging was used to ac-
quire strawberry images at three ripeness stages: ripe, mid-
ripe and unripe. Then, the spectra were pre-processed by
different methods, including X-loading weight, competi-
tive adaptive reweighted sampling (CARS) and successive
projections algorithm (SPA), which were applied to extract
the effective wavelengths. Finally, training an SVM model
with effective wavelengths obtained an outstanding perfor-
mance.

Wu et al. [28] propose a diverting approach by determin-
ing the ripeness level based on the ratio of red pixels within
the segmented strawberry mask.

1.2 Review conclusions

Experiments have been conducted with three very dif-
ferent approaches to implement the ripeness estimation: 1)
A naive approach with pixel counting [28], 2) a machine
learning approach with feature extraction and KNN algo-
rithm [1], and 3) a Deep Learning approach with YOLOVS5
[8].

Because [28] and [1] approaches need inputs with only
one strawberry, ways to perform instance segmentation
were prioritized. Therefore, it was decided to implement



Mask RCNN. This algorithm can count the instances and
segment the strawberries very precisely. Otherwise, when
using YOLOVS, there is no need to find additional algo-
rithms for counting and segmentation, as it does both things
in one execution.

Initially, the Qin et al. [18] paper was assessed to im-
plement instance segmentation, as only recently they pub-
lished a new type of deep neural network known as "highly
accurate dichotomous image segmentation—or DIS, for
short. We trained the a model for DIS using the given
strawberry data and while the results were impressive,
there was no built-in functionality to isolate and count the
specific instances of strawberries, as the algorithm only re-
moved the background of images while retaining objects
of interest. Hence, Mask R-CNN proposed by [9] was our
algorithm of choice for instance segmentation.

2 Data

2.1 Presentation

The same dataset of strawberry pictures provided by
Trinity College Dublin was used to train and test these
methods. This dataset contained 3000 high-resolution pic-
tures of strawberry plants with several fruits and grayscale
pictures with segmented instances. The dataset also con-
tained each picture file containing the bounding box coor-
dinates and the label (O: unripe, 1: partially ripe, 2: fully
ripe) for each strawberry.
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Fig. 1. Dataset summary: (a) Input image, (b) Instance segmen-
tation, (c) Class segmentation, (d) Bounding boxes + classes.

In total, the dataset contained over 17000 individual
strawberries.

2.2 Pretreatment

The dataset had to be pretreated to obtain additional in-
puts that could be easily given to preliminary models to
assess the prediction quality they offered and train some of
the final models. This pretreatment consisted of getting in-
dividual, masked and cropped pictures for each strawberry
in the dataset.

Strawberry counting and ripeness detection

The process consisted of separating each instance seg-
mented strawberry, multiplying it by the original image
to obtain the masked strawberry, and finally obtaining the
correct label for it by getting the most likely label based
on bounding box proximity. Algorithm 1 shows the pseu-
docode.

Algorithm 1 Dataset pretreatment pseudocode
img < inputlmage
msk < inputSegmentation
while subMsk = getSubMask(msk) do
boundingBox <+ getBoundingBox(subMsk)
minDist < oo
bestBB < None
while candBB = getCandidateBB() do
dist + euclidian(boundingBox,candidateBB)
if dist < minDist then
minDist < dist
bestBB < candBB
end if
end while
maskedlmg < img x msk
cropped < crop(maskedImg,boundingBox)
label < getLabel (candBB)
storelmage(subMsk,label)
end while

3 Image Segmentation and counting with Mask
RCNN

Ge et al. [9] show a method of detection and instance
segmentation of strawberries using a Deep Convolutional
Neural Network (DCNN). Their paper used only 310
images of strawberries and reached 0.68 accuracies for
the bounding box overlap between the raw detected and
ground truth. So they decided to add a refinement method
using the width and height ratio (WHR) of the output mask
to detect occlusion, and they were able to reach a 0.87 ac-
curacy for the bounding box overlap.
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Fig. 2. Mask-RCNN Architecture used for strawberry instance
segmentation. (Ge et al. [9])

RCNN stands for Region-Based Convolutional Neural
Network. This approach uses bounding boxes across the
object regions to apply the CNN on each Region of Interest
(ROI) to classify multiple image regions in the proposed
class, as shown in Figure 3.

Another version of RCNN was proposed: Faster RCNN,
a new two-stage architecture. First, the Region Proposal
Network (RPN) proposes multiple objects available in a
given image. Then, the Fast RCNN extracts the features
using RolPool (Region of Interest Pooling) on each object
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Fig. 3. Concept of RCNN. (Girshick et al. [10])

given by the previous stage to perform the classification
and the bounding box regression.
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Fig. 4. RPN Stage (Ren et al. [22])

Mask RCNN is the state-of-the-art Neural Network for
image and instance segmentation. The significant addition
of Mask-RCNN is the pixel-to-pixel alignment. It uses the
same architecture as Faster-RCNN with the two stages, but
for the second stage, in parallel to the box and class predic-
tion, Mask R-CNN has a third branch outputting a binary
mask for each ROL

Fig. 5. Mask R-CNN framework for instance segmentation (He
etal. [11])

The advantage of Mask-RCNN is that it can be pre-
trained (often with COCO dataset), so it does not need a
vast training set and time to reach high accuracy.

We used Mask-RCNN for the segmentation task because
we wanted to use all the images as one class to gain accu-
racy. Also, this model needs less work for the labelling if
we already have a trained model for the Ripeness estima-
tion because we need to draw the mask on each strawberry
without labelling them, so we do not need any knowledge
in agriculture to do it.

Each instance of the objects in the segmentation dataset
was separated into separate images. All of them were put
into a single tensor of dimension Width x Height x N, N

being the number of instances in that image. The bounding
boxes are obtained from the masks, as well. As we only
want to separate instances, all labels are set to one. All the
input images and outputs—consisting of masks, bounding
boxes and labels—were converted into tensors using Py-
Torch before training the model.

Guided by the Side [[7]], these tensor features have been
given to a PyTorch ResNet50 Mask R-CNN pre-trained us-
ing the COCOvl ([15]) dataset for training. In addition,
Adam optimiser has been set during the training and a
penalty parameter of [, = 1077.

4 Ripeness estimation with Pixel counting

Wu et al. [28] use U2-Net algorithm to segment the im-
ages to extract only the strawberries. Then they use a two-
pass algorithm to get individual strawberries. We will not
focus on this method for our implementation but rather on
their ripeness estimation method. Their method is a very
naive approach based on the ratio of the red pixel in each
image to determine a threshold to classify the ripeness.
Moreover, in their paper, they only use two classes. There-
fore, they are not focusing on the accuracy of their tech-
nique for the ripeness estimation. However, we still wanted
to test how a simple algorithm like this could give results
to compare it to the other one as a Baseline.

Wu et al. do not discuss how to implement the pixel
counting method but broadly expose the main reasoning
and ideas behind their method. Therefore, it was necessary
to design a detailed implementation that would match the
principles and main logic discussed in the paper. All the
design choices were backed by the statements in the pa-
per and mathematic principles to obtain normalised fea-
tures that could be generalised.

The algorithm implemented takes all the pixel values in
the R channel of the image and multiplies them by the seg-
mentation mask obtained from the Mask R-CNN module.
This way, only the red pixels belonging to the detected
strawberries are obtained. Then, these pixels are divided by
the number of non-black pixels in the mask. In other words,
the algorithm obtains the strawberry’s average value of the
red channel. These values are then given to a trained clas-
sifier to return the class. The pseudocode for this algorithm
is shown in Algorithm 2. Because the calculation were too
long, we used a reduced dataset with 157 images of indi-
vidual strawberries with 125 training images.

Algorithm 2 Pixel counting pseudocode
img <— inputlmage
msk <— inputSegmentation
R,G,B < separateChannels(img)
rBerry <— R x msk
redSum < sum(R)
mskSum < sum(msk)
avgR < rSum/maskSum




5 Ripeness estimation with Feature extraction
and KNN

In their paper, Anraeni et al. [1] are experimenting with a
ripeness identification method for strawberries using what
they call 'RGB feature extraction’ and a K-NN algorithm
to classify input images into one of four categories/classes:
ripe, unripe, raw and other. Their dataset was minimal (30
images for training and 20 for testing), but they achieved an
accuracy of 85% using the twenty testing images. However,
all error was due to the inability of the K-NN algorithm
to correctly predict the ripeness of a strawberry when it is
only partially ripe. With more test images present and the
removal of the ’other’ class, the accuracy would, in reality,
be lower. Because we are using a different method for the
segmentation and isolation of strawberries, the right side of
the graphic below is what we focused on in this paper.
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Fig. 6. Flowchart of the system. (Anraeni et al. [1])

The ripeness detection method used by [1] used the K-
Nearest Neighbours algorithm to select the K’ closest’ im-
ages from the training set and then determine the most pop-
ular class amongst the selected images in order to predict
the class of the input image. Entire images were not com-
pared; instead, a process called 'RGB feature extraction’
was used to obtain a single three-value vector (the average
centroid) for each training image. These vector values were
stored in a database with the class of the image they came
from. Any input images would have their own centroid cal-
culated and its distance to the stored images computed via
a Euclidean distance function that takes the stored centroid
of a training and the computed centroid of the input image.

As mentioned earlier, we used the Mask-RCNN algo-
rithm to first process any input images into a group of sin-
gle isolated strawberries, each of which was also classified
by the Mask-RCNN algorithm. Then we fed each labelled
and isolated strawberry to the rest of the application for
feature extraction and K-NN algorithm ripeness detection.

Strawberry counting and ripeness detection

Finally, the K-NN predicted label for each strawberry was
overlaid onto the original image, as was its bounding box.

The K- Nearest Neighbours algorithm model is rela-
tively simple compared to deep learning models. First, us-
ing the Mask-RCNN algorithm, we created a folder of a
couple of dozen isolated strawberry images labelled (in
terms of ripeness) by the last number in the file name.
Then, each isolated image was fed to our training function,
which calculated the centroid of that image (using the pro-
cess described in the paper) and then stored that centroid
along with the class of the training image in a database. To
calculate the centroid for any one image, an initial centroid
consisting of the range of R, G, B values within an image
must be generated. In our case, we created an initial cen-
troid with two classes, one consisting of the lowest R, G, B
values in the image, and the other consisting of the highest
R, G, B values inside the image.

R G B
52 62 8 47 80 57 25 30 28
133 180 | 225 71 10 | 150 32 61 93
125 166 | 233 10 | 115 | 217 124 | 60 | 229
Class Component Centroid
R G B
1 52 47 25
2 233 227 229

Fig. 7. Initial centroid for some input image. Anraeni et al. [1])

Then, for each pixel in the input image, it’s R, G, B val-
ues are turned into a vector, and the Euclidean distance be-
tween that RGB vector the each of the classes in the initial
component centroid is determined and recorded.

Pixel’s Component Euclidean Distance

order R G B k1 k2
1 52 47 25 0 326.77
2 133 71 32 84.77 27045
3 125 120 124 143.03 184.76
4 62 80 30 34.84 30075
5 180 110 61 147.13 211.47
6 166 115 60 137.27 213.52
7 &8 57 28 37.48 300.54
8 225 150 93 21251 156.48
9 233 227 229 32677 0

Fig. 8. Calculating distance from each pixel to each initial com-
ponent centroid class. Anraeni et al. [1])

Each pixel was assigned to the class it was closest to, and
then all the pixels assigned to class 1 were summed and av-
eraged to create a new class 1, and all the pixels assigned
to class 2 were summed and averaged to create a new class
2. Finally, these two classes were then themselves summed
and averaged to create a final centroid feature. We used the
Python key-value store Pickle to store each training im-
age’s final centroid feature and their associated ripeness la-
bel.

The last stage of the algorithm was implemented by cre-
ating a function that would take a single image and a K-
value, compute its distance to each training image cen-
troid and keep track of the closest K (centroids, ripeness
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class) pairs. Then, the function would return an estimation
of ripeness based on the most popular class of the K cen-
troids that were deemed to be the closest. Of course, we
also had to handle certain edge cases, such as when there
were ‘draws’ between two or more ripeness classes. In that
case, the total distance of the groups of centroids from each
drawing class was evaluated. The label/class whose group
had the lesser total distance from the input image was cho-
sen as the estimation.

6 Counting and Ripeness estimation with
YOLOvV5

Last, Fan et al. [8] solved the problem of Strawberry Ma-
turity Recognition by using YOLOvVS combined with Dark
channel Enhancement. They also added a 4th class for the
’bad fruits” because their colour was too similar to the ripe.
With just the YOLOVS5 algorithm, they could reach above
85% accuracy on the training set and above 90% on the
testing. Also, because they wanted to use pictures taken
at night as input, they added a dark channel enhancement
pre-treatment to their data and reached again above 90% of
accuracy.

2 Backbone

Fig. 9. Network Structure of YOLOVS. (Fan et al. [8])

Because our dataset has only day pictures, we will only
implement YOLOVS and not the Dark Channel Enhance-
ment for our implementation.

6.1 YOLO

The ”You Only Look Once” (YOLO) (Redmon et al.
[19]) architecture is one of the most famous for object de-
tection. YOLO’s purpose is to predict the class of an ob-
ject and the bounding box of the object. The bounding box
is defined by it’s center ((by,by)) it’s width (b,,) and it’s
height (b). It also predicts the class number ¢ and the
probability of the prediction (P;).

YOLO’s principle is first to divide the image into a grid.
Then, the algorithm will detect if the object is inside each
cell. This process is done by calculating the class proba-
bility P, the bounding box coordinates B, and By, and the
width and height of the bounding box B,, and By,. With this
procedure, we have one vector per grid cell. Using a CNN,
YOLO can predict all objects in one forward pass. YOLO
uses improvements like Non-Max suppression to avoid is-
sues when predicting several bounding boxes for one class
or vector generalisation to be able to detect more than two
classes.

YOLOvV2 (Redmon et al. [20]) also implemented the
concept of Anchor Boxes, so the algorithm uses five an-

chor boxes with predefined widths and heights instead of
making arbitrary guesses for the boundary boxes. In addi-
tion, K-means clustering is used on the dimensions of the
bounding boxes to identify the most appropriate dimen-
sion. Furthermore, YOLOvV3 (Redmon et al. [21]) added
a more complex CNN architecture with 53 convolutional
layers instead of 19. Moreover, YOLOv4 (Bochkovskiy et
al. [2]) added several new concepts, such as the weighted
residual connections, the cross-stage partial connections
and the CloU loss.

6.2 YOLOv5 improvements

The main improvement of YOLOVS is data augmenta-
tion. With each batch, YOLOvVS passes the training data
in a data loader, augmenting the data online using scal-
ing, colour space adjustments and mosaic augmentation.
Mosaic augmentation is a potent tool for training, as it
contributes to balancing small objects being detected more
proportionally to larger objects. This feature is handy in
this scenario, as the strawberries are often small and par-
tially hidden, with only a small part visible.

YOLOVS implementation on PyTorch also uses a 16-bit
floating point which significantly speeds up the inference
time for the model. It also uses a new configuration file,
making it easier to use.

As v4, v5 implements a CSP Backbone to calculate fea-
tures. The CSP model is based on DenseNet. It minimises
the vanishing gradient problem, assists feature propaga-
tion, encourages the network to reuse features, and reduces
the number of parameters ([13]). Last, YOLOVS imple-
ments PA-Net Neck, a layer helping feature aggregation.
As aresult, YOLOVS5 has two key advantages: it is easy to
use and fast to train.

MS COCO Object Detection
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Fig. 10. Evaluation metrics of YOLO versions on the COCO
dataset. (YOLOVS [13])

6.3 YOLOvV5 implementation

The creators and maintainers of YOLOVS and its code
base provided open-source code coupled with extensive
documentation to assist developers interested in using their
algorithm. The YOLOVS5 GitHub repository contained the
source code to train the model based on the strawberry
dataset.
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Fig. 11. Evaluation metrics of YOLOvVS sub-versions on the
COCO dataset. (YOLOVS [13])

We organised our dataset into the original images and
text files containing the bounding boxes and the ripeness
class of its matching image. We then experimented by
training custom models with the different pre-trained mod-
els that YOLOVS offered—e.g. YOLOv5s6, YOLOv5x6,
or else—for short amounts of epochs until we found one
that was most suitable for our needs. Figure 11 shows that
some models are more accurate than others, with a trade-
off between real time computation cost and accuracy. That
is, as the accuracy of the model increases, so too does the
time to evaluate an input image, as does the time required
to train the model.

Initially, we tried to train a custom model using
YOLOvV5x6, the most accurate and largest pre-trained
model. However, the time required for training was too
long, so we downgraded to YOLOVS516, which took 6
hours to complete 75 epochs of training. As recommended
by the YOLOV5 team, the training set has also used a
validation set during training. To start the training process,
only the train.py script provided by the creators needed to
be run after setting up the environment.

The scripts to take an input image, use a custom model,
and generate the output were also provided in the reposi-
tory. Therefore, the code needed to be slightly modified to
run correctly with our data.

7 Results

7.1 Evaluation Mask RCNN

Segmentation evaluation metrics are challenging to get
and interpret, as they are not as straightforward to get as
metrics for other types of computer vision techniques. Ac-
curacy metrics of segmentation problems are typically cal-
culated as the proportion of correctly classified pixels in
the images.

For this paper, pixel accuracy is the metric chosen. This
metric has been particularly calculated as the fraction ob-
tained by dividing the intersection of predictions and tar-
gets, between the union of predictions and targets.

The implementation of Mask RCNN discussed in this
paper obtains a pixel accuracy of 88.20% when predicting
a subset of a 10% of unseen images. This metric is truly
outstanding taking into account how this metric is com-
puted.

Strawberry counting and ripeness detection
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Fig. 12. Mask RCNN training loss evolution as the training set is
incremented.

Fig. 13. Test image results using Mask RCNN segmentation.

7.2 Evaluation Pixel Counting

First, the results of tuning the thresholds can be seen in
Figure 14. The optimal threshold values were 0.1 and 0.7,
with an accuracy of 0.875 (Table 1). We also trained Sev-
eral Classifier on the same data to see if we could improve
the accuracy (Figure 15), and we found that we were able
to reach an accuracy of 0.91 on the testing set with just 125
images in the training set.

7.3 Evaluation Feature extraction and KNN

For the RGB Feature extraction combined with KNN,
we start by verifying that the number of neighbours given
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Fig. 14. Thresholds tuning for the Pixel counting method.

Threshold Training accuracy 0.952
Threshold Testing accuracy 0.875
Decision Tree Training accuracy | 0.96
Decision Tree Testing accuracy | 0.90625

Table 1. Pixel counting accuracy metrics
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Fig. 15. Comparison of the accuracy for different classifier with
the pixel ratio method.

in the paper was optimal. We found that with more data,
k = 15 gave the highest accuracy Table 2.

0.968
0.966

KNN Training accuracy
KNN Testing accuracy
Table 2. KNN accuracy metrics.

We also compared the accuracy of different classifiers
such as SVM, Decision Tree or a random forest, but we
found similar results.

7.4 Evaluation YOLOV5

We are still underfitting, as shown in Figure 20 and Fig-
ure 21. We could continue the training to reach higher pre-
cision/recall. Unfortunately, the training time for this algo-
rithm was superior to 6 hours, and we could not finish the
training (66/100). The optimal number of epochs in the pa-
per is 300 [8]. However, we are still reaching a maximum
precision of 0.99.

7.5 Comparison Counting

If we compare the two Ripeness Methods based on sin-
gle strawberry image input, we notice that even if the re-
sults are very close, The RBG Feature extraction has a bet-
ter accuracy overall.

.A’
uhige

Fig. 16. Input and output images to the Pixel Counting/Naive
algorithm.
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Fig. 17. Tuning of the KNN classifier for the RGB Feature ex-
traction method.

7.6 Comparison Ripeness Estimation

We can see our implementation has even better results
by comparing our results to others in the literature, as seen
in Table 3. This is probably due to the size of the dataset
we are using and the quality of the segmentation mask for
the Mask R-CNN. Also, in some cases, when training some
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Fig. 18. Comparison of the accuracy for different classifier with
the RGB Feature extraction method.
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Fig. 19. Input and output images to the KNN algorithm.

models, we could only use some fraction of the dataset. The
results could reach higher scores if that had been possible.

8 Limitations

Each of our algorithms has its own set of limitations. For
example, the pixel counting algorithm is flawed in that if it
is presented with an image containing no strawberries at

Strawberry counting and ripeness detection
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train_obj_loss
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Fig. 20. YOLOVS training and validation loss as epochs grow.
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Fig. 21. YOLOVS precision and recall scores as epochs grow.

Method Litterature Our Model
Mask RCNN | 0.68 accuracy | 0.88 accuracy
Pixel Ratio - 0.875 accuracy
RGB Feature | 0.85 accuracy | 0.97 accuracy
YOLOv5 >0.9 accuracy | 0.99 precision

Table 3. Result comparison between the implementation pro-
posed and existing implementations in the literature.

all, the output will still be either ripe, unripe or partially
ripe depending on the colour content of the image. Our
implementation of the K-NN algorithm suffers from the
same flaw, but with some adjustments it could be capable
of identifying when there is no strawberry present in the
image. To do this, we would have to re-train the database
with background images that contain no strawberries and a
new class: “other’.

Another major limitation is that we are training our mod-
els strawberries from one farm, and in quite specific light-
ing conditions, so our model is probably very specific to
the dataset we were given. However, if the use-case is au-
tomated harvesting, it’s not a limitation since we want the
algorithm to be specific for the farm we are working for.

Also, we did not analyse the combination of the Mask-
RCNN and the ripeness estimator, so perhaps there is a
propagation of an error that is strongly decreasing the ac-
curacy for the ripeness estimation.
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Fig. 22. Input and output images to the YOLOVS algorithm.
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Fig. 23. Comparaison of the accuracy for different classifier on
the Pixel Ratio and RGB Feature extraction methods.

9 Conclusions

To conclude, all three methods gave outstanding overall
results: 88.20% overlapping accuracy for the Mask RCNN
and the results for YOLOvVS where a precision of 0.99 for
both the ripeness estimation and the bounding box over-

lapping. Moreover, for the ripeness, we have an accuracy
of 0.875 using the Thresholds and 0.906 using a Decision
Tree with only a 157 images dataset. Finally, for the RGB
Feature extraction, we have an accuracy of 0.966 on all the
images. Still, depending on the resources and dataset, some
methods could be more appropriate. Having a large dataset
with time for the training, not wanting a segmentation but
just a bounding box with the position of each strawberry,
then YOLOVS5 would be the best solution because of its ac-
curacy.

On the other hand, Mask-RCNN can be trained on a
much smaller dataset and still give good results because
it is already pre-trained. Also, the training time is much
faster, and since we have other methods to estimate the
ripeness of the strawberries, we just need one class for the
strawberry. Therefore, the dataset is much easier to pre-
pare. For the ripeness estimation, both techniques give sim-
ilar results with higher accuracy for the RGB feature ex-
traction. However, it is also because it was trained on all
the images, whereas the Pixel Ratio was trained on only
125 images.

10 Future work

In the future, several aspects of this research can be
deepened and broadened to improve the performance of
automated strawberry harvesting systems.

One key area of improvement is the development of
more advanced imaging and feature obtention, such as hy-
perspectral imaging, as discussed by Shao et al. [25]. An-
other interesting approach discussed during the develop-
ment of the experiments was the possibility of executing
detection systems at image obtention time. This way, the
resulting ripeness evaluation images could have much bet-
ter quality.

The addition of videos could be a pivotal expansion to
these systems, as having several images of each capture
could allow the models to grasp different angles and spa-
tial information. These two concepts could improve both
detection and ripeness classification.

Furthermore, models could be trained and tested with
larger datasets, including varying lighting conditions and
day hours. The resulting systems could benefit from a
larger, more representative and diverse dataset that could
improve the algorithm’s performance and generalisability.

Finally, further research could investigate the integration
of these systems in an authentic environment for real-world
testing.
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